Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(18)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271719

RESUMO

Photothermal agent accompanying with thermally responsive materials, displays well controlled drug release property, which is well-received as an outstanding design strategy for simultaneous photothermal/chemotherapy in cancer. Cyanine dye, as the prestigious photothermal agent has shown great potential due to its preeminent near-infrared absorbance and excellent thermal conversion efficiency. However, their inherent defect such as inferior photothermal stability, high leakage risk and poor therapy efficacy limit their further application in cancer therapy. Hence, a facile and universal strategy to make up these deficiencies is developed. Chemotherapeutic drug DOX and cyanine dye were loaded into polydopamine (PDA) nanoparticles. The PDA encapsulation dramatically improved the photothermal stability of cyanine dye. Attributed by the PDA structure feature, the thermo-sensitive small molecule glyamine (Gla) is introduced into the PDA surface to lessen leakage. The Gla can form a dense encapsulation layer on the dopamine surface through hydrogen bond. This newly fabricated Cyanine/DOX@PDA-Gla nanopaltform is characterized with NIR light/pH dual-responsive property, high NIR photothermal conversion performance and fluorescence guided chemo-photothermal therapy.


Assuntos
Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias , Polímeros , Humanos , Terapia Fototérmica , Doxorrubicina/química , Fototerapia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
2.
Mol Ther ; 31(7): 1938-1959, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002605

RESUMO

cGAS-STING signaling is a central component in the therapeutic action of most existing cancer therapies. The accumulated knowledge of tumor immunoregulatory network in recent years has spurred the development of cGAS-STING agonists for tumor treatment as an effective immunotherapeutic strategy. However, the clinical translation of these agonists is thus far unsatisfactory because of the low immunostimulatory efficacy and unrestricted side effects under clinically relevant conditions. Interestingly, the rational integration of biomaterial technology offers a promising approach to overcome these limitations for more effective and safer cGAS-STING-mediated tumor therapy. Herein, we first outline the cGAS-STING signaling axis and generally discuss its association with tumors. We then symmetrically summarize the recent progress in those biomaterial-based cGAS-STING agonism strategies to generate robust antitumor immunity, categorized by the chemical nature of those cGAS-STING stimulants and carrier substrates. Finally, a perspective is provided to discuss the existing challenges and potential opportunities in cGAS-STING modulation for tumor therapy.


Assuntos
Materiais Biocompatíveis , Excipientes , Imunidade Inata , Imunização , Nucleotidiltransferases/genética , Transdução de Sinais , Neoplasias/imunologia , Neoplasias/terapia , Antineoplásicos/imunologia
3.
Angew Chem Int Ed Engl ; 60(16): 8938-8947, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33543529

RESUMO

Ferroptosis is a new form of regulated cell death that shows promise for tumor treatment. Most current ferroptosis tumor therapies are based on the intrinsic pathological features of the malignancies, and it would be of clinical significance to develop ferroptosis-inducing strategies with improved tumor specificity and modulability. Here we report a polydopamine-based nanoplatform (FeII PDA@LAP-PEG-cRGD) for the efficient loading of Fe2+ and ß-lapachone (LAP), which could readily initiate ferroptosis in tumor cells upon treatment with near-infrared light. PDA nanostructures could generate mild hyperthermia under NIR irritation and trigger the release of the ferroptosis-inducing Fe2+ ions. The NIR-actuated photothermal effect would also activate cellular heat shock response and upregulate the downstream NQO1 via HSP70/NQO1 axis to facilitate bioreduction of the concurrently released ß-lapachone and enhance intracellular H2 O2 formation to promote the Fe2+ -mediated lipid peroxidation.


Assuntos
Antineoplásicos/farmacologia , Biopolímeros/farmacologia , Ferroptose/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Nanopartículas/química , Naftoquinonas/farmacologia , Animais , Antineoplásicos/química , Biopolímeros/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Raios Infravermelhos , Quelantes de Ferro/química , Camundongos , Naftoquinonas/química , Tamanho da Partícula , Fototerapia , Propriedades de Superfície
4.
Chem Rec ; 16(4): 1833-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27258402

RESUMO

Rapid developments in materials science and biological mechanisms have greatly boosted the research discoveries of new drug delivery systems. In the past few decades, hundreds of nanoparticle-based drug carriers have been reported almost on a daily basis, in which new materials, structures, and mechanisms are proposed and evaluated. Standing out among the drug carriers, the hybrid nanoparticle systems offer a great opportunity for the optimization and improvement of conventional chemotherapy. By combining several features of functional components, these hybrid nanoparticles have shown excellent promises of improved biosafety, biocompatibility, multifunctionality, biodegradability, and so forth. In this Personal Account, we highlight the recent research advances of some representative hybrid nanoparticles as drug delivery systems and discuss their design strategies and responsive mechanisms for controlled drug delivery.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Luz , Lipossomos , Fenômenos Magnéticos , Nanopartículas de Magnetita , Oxirredução , Ondas Ultrassônicas
5.
Nanotechnology ; 26(42): 425101, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26422003

RESUMO

In recent years, magnetic hyperthermia nanoparticles have drawn great attention for cancer therapy because they have no limitation of tissue penetration during the therapy process. In this study, cubic nanoporous Fe2O3 nanoparticles derived from cubic Prussian blue nanoparticles were used as magnetic cores to generate heat by alternating the current magnetic field (AMF) for killing cancer cells. In addition, polypyrrole (PPy) was coated on the surfaces of the cubic Fe2O3 nanoparticles to load doxorubicin hydrochloride (DOX). The PEG component was then physically adsorbed onto the surfaces of the nanoparticles, resulting in a Fe2O3@PPy-DOX-PEG nanocomposite. The nanocomposite was triggered by acid stimulus and AMF to release DOX, resulting in a remarkable combination therapeutic effect via chemotherapy and magnetic hyperthermia. Furthermore, the nanocomposite could realize magnetic resonance imaging (MRI) due to the magnetic core structure. The study provides an alternative for the development of new nanocomposites for combination cancer therapy with MR imaging in vivo.


Assuntos
Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanocompostos/química , Polímeros/química , Pirróis/química , Animais , Antineoplásicos/química , Apoptose , Preparações de Ação Retardada , Doxorrubicina/química , Doxorrubicina/farmacocinética , Quimioterapia Combinada , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Med Insights Case Rep ; 17: 11795476241254266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751963

RESUMO

Meige syndrome is a rare neurological disease characterized by segmental dystonia, specifically blepharospasm and oromandibular dystonia. These symptoms are often accompanied by complex movements of the eyelids, lower facial muscles, mandible, and neck muscles. Bilateral blepharospasm is the most common feature of this disease. In this case report, we present the successful treatment of refractory blepharospasm in a 72-year-old woman with Meige syndrome via 2 incisions resulting from myectomy and in situ surgery.

7.
Adv Healthc Mater ; 13(9): e2303337, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38154036

RESUMO

Triple-negative breast cancer stem cells (TCSCs) are considered as the origin of recurrence and relapse. It is difficult to kill not only for its resistance, but also the lacking of targetable molecules on membrane. Here, it is confirmed that ST6 ß-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal-1) is highly expressed in TCSCs that may be the key enzyme involved in glycoengineering via sialic acid (SA) metabolism. SA co-localizes with a microdomain on cell membrane termed as lipid rafts that enrich CSCs marker and necroptosis proteins mixed lineage kinase domain-like protein (MLKL), suggesting that TCSCs may be sensitive to necroptosis. Thus, the triacetylated N-azidoacetyl-d-mannosamine (Ac3ManNAz) is synthesized as the glycoengineering substrate and applied to introduce artificial azido receptors, dibenzocyclooctyne (DBCO)-modified liposome is used to deliver Compound 6i (C6), a receptor-interacting serine/threonine protein kinase 1(RIPL1)-RIP3K-mixed lineage kinase domain-like protein(MLKL) activator, to induce necroptosis. The pro-necroptosis effect is aggravated by nitric oxide (NO), which is released from NO-depot of cholesterol-NO integrated in DBCO-PEG-liposome@NO/C6 (DLip@NO/C6). Together with the immunogenicity of necroptosis that releases high mobility group box 1(HMGB1) of damage-associated molecular patterns, TCSCs are significantly killed in vitro and in vivo. The results suggest a promising strategy to improve the therapeutic effect on the non-targetable TCSCs with high expression of ST6Gal-1 via combination of glycoengineering and necroptosis induction.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Necroptose , Lipossomos , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Células-Tronco/metabolismo , Apoptose
8.
Nat Commun ; 15(1): 5035, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866788

RESUMO

Radio-immunotherapy exploits the immunostimulatory features of ionizing radiation (IR) to enhance antitumor effects and offers emerging opportunities for treating invasive tumor indications such as melanoma. However, insufficient dose deposition and immunosuppressive microenvironment (TME) of solid tumors limit its efficacy. Here we report a programmable sequential therapeutic strategy based on multifunctional fusogenic liposomes (Lip@AUR-ACP-aptPD-L1) to overcome the intrinsic radio-immunotherapeutic resistance of solid tumors. Specifically, fusogenic liposomes are loaded with gold-containing Auranofin (AUR) and inserted with multivariate-gated aptamer assemblies (ACP) and PD-L1 aptamers in the lipid membrane, potentiating melanoma-targeted AUR delivery while transferring ACP onto cell surface through selective membrane fusion. AUR amplifies IR-induced immunogenic death of melanoma cells to release antigens and damage-associated molecular patterns such as adenosine triphosphate (ATP) for triggering adaptive antitumor immunity. AUR-sensitized radiotherapy also upregulates matrix metalloproteinase-2 (MMP-2) expression that combined with released ATP to activate ACP through an "and" logic operation-like process (AND-gate), thus triggering the in-situ release of engineered cytosine-phosphate-guanine aptamer-based immunoadjuvants (eCpG) for stimulating dendritic cell-mediated T cell priming. Furthermore, AUR inhibits tumor-intrinsic vascular endothelial growth factor signaling to suppress infiltration of immunosuppressive cells for fostering an anti-tumorigenic TME. This study offers an approach for solid tumor treatment in the clinics.


Assuntos
Aptâmeros de Nucleotídeos , Imunoterapia , Lipossomos , Melanoma , Microambiente Tumoral , Lipossomos/química , Aptâmeros de Nucleotídeos/química , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , Melanoma/terapia , Melanoma/imunologia , Humanos , Microambiente Tumoral/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Ouro/química , Camundongos Endogâmicos C57BL , Feminino , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Trifosfato de Adenosina/metabolismo
9.
Biomaterials ; 299: 122184, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276796

RESUMO

Hydrogels are a class of biocompatible materials with versatile functions that have been increasing explored for the localized treatment of ulcerative colitis (UC), but various mechanical stimuli may cause premature hydrogel breakage and detachment, impeding their further clinical translation. Here we report a multifunctional mechanically-resilient self-healing hydrogel for effective UC treatment, which is synthesized through the host-guest interaction between dopamine/ß-cyclodextrin-modified hyaluronic acid (HA-CD-DA) and amantadine-modified carboxymethyl chitosan (CMCS-AD). The excessive ß-CD cavities allow the incorporation of dexamethasone (DEX), while the porous hydrogel network potentiates the encapsulation of basic fibroblast growth factor (bFGF) and L-alanyl-l-glutamine (ALG). DA moieties in HA components allow firm adhesion of the hydrogel to the ulcerative lesions after in-situ implantation, while the reversible host-guest interaction between CD and AD could enhance the persistence of hydrogel. The hydrogel demonstrated favorable biocompatibility and could continuously release DEX to induce M1-to-M2 repolarization of mucosal macrophages through inhibiting the toll-like receptor 4 (TLR4)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) axis. Furthermore, the co-delivered bFGF and ALG facilitates the regeneration of ulcerative mucosa and restore its barrier functions to ameliorate UC symptoms. The mechanically resilient hydrogel offers an integrative approach for UC therapy in the clinics.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Hidrogéis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Mucosa/metabolismo , Inflamação/tratamento farmacológico
10.
Medicine (Baltimore) ; 101(43): e31378, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36316849

RESUMO

RATIONALE: Hereditary motor-sensory peripheral neuropathy, or Charot-Marie-Tooth (CMT) Charcot-Marie-Tooth disease is an inherited peripheral neuropathy characterized by progressive limb weakness and muscle atrophy. As the disease progresses, sensory and autonomic involvement may occur. We report a case of CMT associated with SOD1 gene mutation, in order to provide new ideas for clinical disease diagnosis. PATIENT CONCERNS: A 50-years-old female patient was admitted to the hospital with "progressive weakness of the right lower extremity for 5 years, aggravating, and weakness of the left lower extremity for 4 months". DIAGNOSIS: The patient was diagnosed CMT. INTERVENTION: Nerve nutrition and rehabilitation therapy were given, but the patient's condition still did not improve significantly. OUTCOMES: The improvement of symptoms was not obvious. LESSONS: The clinical manifestations and electromyography results of this patient are consistent with the characteristics of CMT. The peripheral nerve-related hereditary gene test found mutation in SOD1. It is possible that this mutation is linked to CMT. The disease is a neurodegenerative disease, that may be slowed by physical therapy and rehabilitation, but could not be healed.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatias Hereditárias Sensoriais e Autônomas , Neuropatia Hereditária Motora e Sensorial , Doenças Neurodegenerativas , Feminino , Humanos , Pessoa de Meia-Idade , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Superóxido Dismutase-1/genética , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética , Mutação
11.
J Hazard Mater ; 423(Pt A): 127062, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482080

RESUMO

Polyethylene film is the most widely used plastic film in agricultural production activities, and its depolymerization products are mainly polyethylene-particles (PE-particles) of different molecular weights. However, the impact of the molecular weights of the PE-particles on soil-crop microenvironment has not been elucidated. In this study, a potted microcosmic simulation system was used to evaluate the impact of low, medium and high molecular weight PE-particles on soil metabolism, microbial community structure, and crop growth. There were obvious differences in the shape and surface microstructure of PE-particles with different molecular weights. Soil sucrase and peroxidase had significant responses to PE-particles of different molecular weights. In the rhizosphere, the number of microorganisms and the microbial alpha diversity index increased with increasing PE-particles molecular weight. Rhizobacter, Nitrospira, and Sphingomonas were the dominant microorganisms induced by PE-particles to regulate the metabolism of elements. Carbohydrate and amino acid contents in rhizosphere soils were the key factors affecting the species abundance of Lysobacter, Polyclovorans, Rhizobacter, and Sphingomonas. In plants, PE-particles treatment reduced the plant biomass and photosynthetic rate and disrupted normal mineral nutrient metabolism. Different molecular weight PE-particles may therefore have adverse effects on the soil-plant system.


Assuntos
Microbiota , Rizosfera , Peso Molecular , Polietileno , Solo , Microbiologia do Solo , Zea mays
12.
Sci Total Environ ; 806(Pt 4): 150895, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655622

RESUMO

The effects of polystyrene nanoplastics (PSNPs) on the physiological and molecular metabolism of corn seedlings were examined by treating corn (Zea mays L.) seedlings with 100, 300, and 500 nm diameter PSNPs and examining plant photosynthetic characteristics, antioxidant enzyme systems, and molecular metabolism. After 15 days of exposure to PSNPs with different particle sizes (50 mg·L-1), the photosynthetic characteristics of the plant remained stable, and the maximum photochemical quantum yield (Fv/Fm) and non-photochemical quenching coefficient (NPQ) had no significant effects. The root microstructure was damaged and the antioxidant enzyme system was activated, and the content of malondialdehyde (MDA) was significantly increased by 2.25-4.50-fold. In addition, 100 nm and 300 nm PSNPs exposure caused root superoxide dismutase (SOD) activity to increase 1.28-fold and 1.53-fold, and glutathione-peroxidase (GSH-PX) activity increased 1.30-fold and 1.58-fold. Non-targeted metabolomics analysis identified a total of 304 metabolites. Exposure to 100, 300, and 500 nm PSNPs led to the production of 85 (upregulated: 85, downregulated: 0), 73 (upregulated: 73, downregulated: 0), and 86 (upregulated: 84, downregulated: 2) differentially expressed metabolites, respectively, in the plant roots. Co-expressed differential metabolites accounted for 38.2% of the metabolites and indicated a metabolic imbalance primarily in organic acids and derivatives in the root system. The most significant enrichment pathways were those of alanine, aspartate, and glutamate metabolism. Overall, exposure to PSNPs of different particle sizes activated the root antioxidant enzyme system and interfered with plant basic metabolism. The alanine, aspartate, and glutamate metabolic pathways appear to be closely related to plant mechanisms for tolerance/detoxification of PSNPs.


Assuntos
Poliestirenos , Plântula , Microplásticos , Fotossíntese , Zea mays
13.
J Mater Chem B ; 9(30): 6037-6043, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34259307

RESUMO

To reduce the side effect of paclitaxel and enhance accumulation at the tumor site, a novel redox-responsive nanovector with excellent biocompatibility based on disulfide-linked amphiphilic polymer and magnetic nanoparticle was prepared. The system would realize PTX release due to breakage of the disulfide bond when being targeted to the tumor site by the external magnetic field. The nanovector significantly improved endocytosis and enhanced accumulation at the tumor site, with an effective inhibition of tumor cells in vitro and in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos Férricos/química , Nanopartículas/química , Paclitaxel/farmacologia , Polímeros/química , Tensoativos/química , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Fenômenos Magnéticos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oxirredução , Paclitaxel/química , Polímeros/síntese química , Tensoativos/síntese química , Células Tumorais Cultivadas
14.
J Mater Chem B ; 9(30): 6029-6036, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34259279

RESUMO

To improve in vivo osseointegration of pure titanium implant, Sr-Ga clavate double hydroxide (CDH) coating was grown in situ on a titanium (Ti) substrate with simple hydrothermal and calcination treatments at 500 °C. The obtained coating on the Ti substrate (Ti-CDH and Ti-CDH500) was researched by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Ti-CDH exhibited a sustained release profile of metal ions and maintained a slightly alkaline environment. The CDH coating was beneficial for osteogenic differentiation of mesenchymal stem cells (MSCs), which were reflected by the results of cellular assays, including alkaline phosphatase activity (ALP), cell mineralization capability (ARS), and osteogenesis-related gene expression. Besides, Ti-CDH could effectively improve the autophagic levels in MSCs, which further promoted osteogenic differentiation of MSCs. Hence, the Ti surface with Sr-Ga CDH modification supplied a simple and effective strategy to design biomaterials for bone generation.


Assuntos
Materiais Biocompatíveis/farmacologia , Germânio/farmacologia , Hidróxidos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrôncio/farmacologia , Titânio/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Germânio/química , Hidróxidos/química , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estrôncio/química , Propriedades de Superfície , Titânio/química
15.
J Mater Chem B ; 8(10): 2115-2122, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32073099

RESUMO

Finding out how to overcome multistage biological barriers for nanocarriers in cancer therapy to obtain highly precise drug delivery is still a challenge. Herein, we prepared a multistage and cascaded switchable polymeric nanovehicle, self-assembled from polyethylene glycol grafted amphiphilic copolymer containing hydrophobic poly(ortho ester) and hydrophilic ethylenediamine-modified poly(glycidyl methacrylate) (PEG-g-p(GEDA-co-DMDEA)) for imaging-guided chemo-photothermal combination anticancer therapy. Notably, a novel ATRP initiator containing cyanine dye was designed and attached to the polymer, providing the nanovehicle with NIR-light induced photothermal and fluorescent properties. The PEG shell displayed tumor-microenvironment-induced detachment, resulting in the surface charge change of the nanovehicle from neutral to positive and thus enhancing cellular uptake. Subsequently, the hydrophobic pDMDEA hydrolyzed into a hydrophilic segment in the acidic lysosome, leading to sufficient drug release. Finally, with the aid of the photothermal property, the therapeutic drug DOX successfully escaped from the lysosome to exert chemotherapy. This well-defined polymeric nanoplatform promoted the development of designing novel theranostic polymeric nanovehicles for precise cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Carbocianinas/química , Doxorrubicina/farmacologia , Nanopartículas/química , Fotoquimioterapia , Polímeros/química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lasers , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície , Células Tumorais Cultivadas
16.
Biomaterials ; 230: 119666, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31831222

RESUMO

Various obstacles impede the chemotherapy efficiency of glioma in clinic, such as blood brain barrier (BBB) and blood brain tumor barrier (BBTB). Ligand-mediated polymeric micelles have shown great potential for improving the efficiency of glioma treatment. Herein, we developed a disulfide bond-conjugated prodrug polymer consisted of camptothecin (CPT) and polyethylene glycol (PEG) with further modification of iRGD peptide. The polymer of CPT-S-S-PEG-COOH could self-assemble into nanosized polymeric micelles with diameter around 100 nm, and loaded with photosensitizer IR780 for combination therapy. The micelles displayed good stability with controlled drug release under physiological environment. Importantly, the iRGD modified polymeric micelles demonstrated favorable ability to cross the BBB and target glioma cells via αv ß integrin and neuropilin-1-mediated ligand transportation in vitro and in vivo. The whole synthesis process is simple and the drug loading content of CPT in the CPT-S-S-PEG-iRGD@IR780 micelles was higher than 10%. Moreover, CPT-S-S-PEG-iRGD@IR780 micelles combined chemotherapy with photodynamic therapy (PDT) displayed more excellent tumor-killing capability than the other groups. Thus, both in vitro and in vivo studies suggested that the targeting prodrug system could not only effectively cross various barriers to reach at glioma site, but also significantly enhance the antitumor effect with laser irradiation. Our findings consequently suggested that CPT-S-S-PEG-iRGD@IR780 micelles with laser irradiation are a promising drug delivery system for glioma therapy.


Assuntos
Glioma , Pró-Fármacos , Barreira Hematoencefálica , Camptotecina , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Humanos , Micelas , Polietilenoglicóis
17.
Chem Commun (Camb) ; 56(69): 9978-9981, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32851998

RESUMO

A tumor redox-activatable micellar nanoplatform based on the naturally occurring biomacromolecule hyaluronic acid (HA) was developed for complementary photodynamic/chemotherapy against CD44-positive tumors. Here HA was first conjugated with l-carnitine (Lc)-modified zinc phthalocyanine (ZnPc) via disulfide linkage and then co-assembled with tirapazamine (TPZ) to afford the physiologically stable micellar nanostructure. The mitochondria-targeted photodynamic activity of ZnPc-Lc could efficiently activate the mitochondrial apoptosis cascade and deplete the oxygen in the tumor intracellular environment to amplify the hypoxia-dependent cytotoxic effect of TPZ.


Assuntos
Biopolímeros/química , Micelas , Mitocôndrias/metabolismo , Nanoestruturas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carnitina/química , Linhagem Celular Tumoral , Humanos , Ácido Hialurônico/química , Indóis/química , Raios Infravermelhos , Isoindóis , Camundongos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Compostos Organometálicos/química , Oxirredução , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Tirapazamina/química , Tirapazamina/farmacologia , Tirapazamina/uso terapêutico , Transplante Heterólogo , Compostos de Zinco
18.
J Mater Chem B ; 8(40): 9314-9324, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966545

RESUMO

The high surface elastic modulus of the titanium (Ti) implant is one of the critical factors causing poor osteointegration between the implant surface and surrounding bone tissue. To address this challenge, spherical silica nanoparticles (SSNs) and spherical titania nanoparticles (STNs) with different sizes were synthesized and embedded into Ti surfaces via a micro-arc oxidation (MAO) technique. There were no significant changes in the surface roughness and protein adsorption behaviors before and after the embedding of spherical silica nanoparticles and titania nanoparticles into the Ti implant. However, the surface elastic modulus of Ti-SSNs decreased from 93 GPa to 6.7 GPa, while there was still no change in surface elastic modulus between Ti and Ti-STN groups. In vitro experiments showed that Ti-SSNs, especially Ti-SSN3, significantly stimulated the expression level and nuclear localization of the transcription factor YAP. YAP/TAZ could further inhibit the phosphorylation of AKT and mTOR proteins in MSCs, leading to higher LC3-II protein expression and osteogenic differentiation of MSCs. Ti-SSNs also showed a higher level of autophagosome formation, ALP activity and mineralization capability compared to the other groups. Our results showed that the surface elasticity modulus of an implant plays an important role in the regulation of MSC behaviors. Therefore, designing an implant with an optimal elastic modulus at the surface might have great clinical potential in the bone repair field.


Assuntos
Autofagia/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Osteogênese/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Materiais Revestidos Biocompatíveis/toxicidade , Módulo de Elasticidade , Feminino , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Titânio/química , Titânio/toxicidade , Proteínas de Sinalização YAP
19.
Nanoscale ; 12(1): 130-144, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31799577

RESUMO

Tumor-associated macrophages (TAMs) are the most important components in the tumor immunosuppressive microenvironment, promoting tumor growth and metastasis. Although TAMs have become one of the hot topics of tumor immunotherapy, challenges still remain to achieve TAM-targeted re-polarization therapy. In this work, porous hollow iron oxide nanoparticles (PHNPs) were synthesized for loading a P13K γ small molecule inhibitor (3-methyladenine, 3-MA) and further modified by mannose to target TAMs. The delivery system named PHNPs@DPA-S-S-BSA-MA@3-MA showed good efficiency for targeting TAMs. The inflammatory factor NF-κB p65 of macrophages was activated by the combination of PHNPs and 3-MA, which synergistically switched TAMs to pro-inflammatory M1-type macrophages. As a result, it activated immune responses and inhibited tumor growth in vivo. The study provides an intracellular switch of the TAM phenotype for targeted TAM therapy.


Assuntos
Óxido Ferroso-Férrico/química , Macrófagos/imunologia , Nanopartículas/química , Adenina/análogos & derivados , Adenina/química , Adenina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Feminino , Humanos , Imunoterapia , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Polietilenoglicóis/química , Porosidade , Soroalbumina Bovina/química , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo
20.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097529

RESUMO

Poor wound healing after diabetes or extensive burn remains a challenging problem. Recently, we presented a physical approach to fabricate ultrasmall silver particles from Ångstrom scale to nanoscale and determined the antitumor efficacy of Ångstrom-scale silver particles (AgÅPs) in the smallest size range. Here we used the medium-sized AgÅPs (65.9 ± 31.6 Å) to prepare carbomer gel incorporated with these larger AgÅPs (L-AgÅPs-gel) and demonstrated the potent broad-spectrum antibacterial activity of L-AgÅPs-gel without obvious toxicity on wound healing-related cells. Induction of reactive oxygen species contributed to L-AgÅPs-gel-induced bacterial death. Topical application of L-AgÅPs-gel to mouse skin triggered much stronger effects than the commercial silver nanoparticles (AgNPs)-gel to prevent bacterial colonization, reduce inflammation, and accelerate diabetic and burn wound healing. L-AgÅPs were distributed locally in skin without inducing systemic toxicities. This study suggests that L-AgÅPs-gel represents an effective and safe antibacterial and anti-inflammatory material for wound therapy.


Assuntos
Queimaduras , Nanopartículas Metálicas , Resinas Acrílicas , Animais , Antibacterianos/farmacologia , Queimaduras/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Prata/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA