Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(17): e0106322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000841

RESUMO

Bacteriophages (phages) are an integral part of the human oral microbiome. Their roles in modulating bacterial physiology and shaping microbial communities have been discussed but remain understudied due to limited isolation and characterization of oral phage. Here, we report the isolation of LC001, a lytic phage targeting human oral Schaalia odontolytica (formerly known as Actinomyces odontolyticus) strain XH001. We showed that LC001 attached to and infected surface-grown, but not planktonic, XH001 cells, and it displayed remarkable host specificity at the strain level. Whole-genome sequencing of spontaneous LC001-resistant, surface-grown XH001 mutants revealed that the majority of the mutants carry nonsense or frameshift mutations in XH001 gene APY09_05145 (renamed ltg-1), which encodes a putative lytic transglycosylase (LT). The mutants are defective in LC001 binding, as revealed by direct visualization of the significantly reduced attachment of phage particles to the XH001 spontaneous mutants compared that to the wild type. Meanwhile, targeted deletion of ltg-1 produced a mutant that is defective in LC001 binding and resistant to LC001 infection even as surface-grown cells, while complementation of ltg-1 in the mutant background restored the LC001-sensitive phenotype. Intriguingly, similar expression levels of ltg-1 were observed in surface-grown and planktonic XH001, which displayed LC001-binding and nonbinding phenotypes, respectively. Furthermore, the overexpression of ltg-1 failed to confer an LC001-binding and -sensitive phenotype to planktonic XH001. Thus, our data suggested that rather than directly serving as a phage receptor, ltg-1-encoded LT may increase the accessibility of phage receptor, possibly via its enzymatic activity, by cleaving the peptidoglycan structure for better receptor exposure during peptidoglycan remodeling, a function that can be exploited by LC001 to facilitate infection. IMPORTANCE The evidence for the presence of a diverse and abundant phage population in the host-associated oral microbiome came largely from metagenomic analysis or the observation of virus-like particles within saliva/plaque samples, while the isolation of oral phage and investigation of their interaction with bacterial hosts are limited. Here, we report the isolation of LC001, the first lytic phage targeting oral Schaalia odontolytica. Our study suggested that LC001 may exploit the host bacterium-encoded lytic transglycosylase function to gain access to the receptor, thus facilitating its infection.


Assuntos
Actinomycetaceae , Bacteriófagos , Glicosiltransferases , Actinomycetaceae/enzimologia , Actinomycetaceae/virologia , Receptores de Bacteriófagos/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Especificidade de Hospedeiro , Humanos , Microbiota , Boca/microbiologia , Boca/virologia , Mutação , Peptidoglicano/metabolismo , Plâncton/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(17): 8499-8504, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30975748

RESUMO

It is well-understood that many bacteria have evolved to survive catastrophic events using a variety of mechanisms, which include expression of stress-response genes, quiescence, necrotrophy, and metabolic advantages obtained through mutation. However, the dynamics of individuals leveraging these abilities to gain a competitive advantage in an ecologically complex setting remain unstudied. In this study, we observed the saliva microbiome throughout the ecological perturbation of long-term starvation, allowing only the species best equipped to access and use the limited resources to survive. During the first several days, the community underwent a death phase that resulted in a ∼50-100-fold reduction in the number of viable cells. Interestingly, after this death phase, only three species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providencia alcalifaciens, all members of the family Enterobacteriaceae, appeared to be transcriptionally active and recoverable. Klebsiella are significant human pathogens, frequently resistant to multiple antibiotics, and recently, ectopic colonization of the gut by oral Klebsiella was documented to induce dysbiosis and inflammation. MetaOmics analyses provided several leads for further investigation regarding the ecological success of the Enterobacteriaceae. The isolates accumulated single nucleotide polymorphisms in known growth advantage in stationary phase alleles and produced natural products closely resembling antimicrobial cyclic depsipeptides. The results presented in this study suggest that pathogenic Enterobacteriaceae persist much longer than their more benign neighbors in the salivary microbiome when faced with starvation. This is particularly significant, given that hospital surfaces contaminated with oral fluids, especially sinks and drains, are well-established sources of outbreaks of drug-resistant Enterobacteriaceae.


Assuntos
Microbioma Gastrointestinal/fisiologia , Klebsiella/fisiologia , Viabilidade Microbiana , Boca/microbiologia , Providencia/fisiologia , Humanos , Saliva/microbiologia
3.
Am J Orthod Dentofacial Orthop ; 161(5): e475-e485, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248417

RESUMO

INTRODUCTION: Orthodontic treatment interferes with oral hygiene and promotes plaque retention, which leads to gingival inflammation and enamel demineralization. Although removable clear aligners (CAs) are designed to improve oral hygiene compared with fixed appliances (FAs), comprehensive studies comparing their respective effects on the oral microbiome are limited. This longitudinal study investigated the microbial changes during orthodontic treatment with FA and CA in correlation with clinical parameters. METHODS: Clinical parameters and supragingival plaque were collected from 12 study participants for the FA or CA treatment groups at baseline and at least twice at the 1, 3, 6, and 12-month follow-up appointments. The plaque was also harvested from the aligner tray for the CA group. Microbiome composition was determined via 16S rRNA gene sequencing, compared between groups, and correlated with clinical parameters. RESULTS: Plaque (PI) and gingival indexes (GI) increased significantly in the FA but not the CA group. Beta but not alpha diversities of the microbial communities were distinct between the 2 treatment groups, even though genus-level differences were not significant except for Leptotrichia. The CA tray harbors a unique plaque community. Elevated PI and GI in the FA group correlated with a higher abundance of disease-related genera. CONCLUSIONS: Orthodontic treatments trigger appliance-related plaque community shifts from baseline, and the CA tray environment attracts distinct microbial communities. In comparison with FA, the use of CA resulted in better oral health index outcomes, which is reflected by the corresponding PI and GI-associated oral microbial communities.


Assuntos
Placa Dentária , Microbiota , Aparelhos Ortodônticos Removíveis , Índice de Placa Dentária , Humanos , Estudos Longitudinais , Aparelhos Ortodônticos/efeitos adversos , Aparelhos Ortodônticos Fixos/efeitos adversos , RNA Ribossômico 16S
4.
Periodontol 2000 ; 85(1): 101-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33226675

RESUMO

Interspecies interactions are key determinants in biofilm behavior, ecology, and architecture. The cellular responses of microorganisms to each other at transcriptional, proteomic, and metabolomic levels ultimately determine the characteristics of biofilm and the corresponding implications for health and disease. Advances in omics technologies have revolutionized our understanding of microbial community composition and their activities as a whole. Large-scale analyses of the complex interaction between the many microbial species residing within a biofilm, however, are currently still hampered by technical and bioinformatics challenges. Thus, studies of interspecies interactions have largely focused on the transcriptional and proteomic changes that occur during the contact of a few prominent species, such as Porphyromonas gingivalis, Streptococcus mutans, Candida albicans, and a few others, with selected partner species. Expansion of available tools is necessary to grow the revealing, albeit limited, insight these studies have provided into a profound understanding of the nature of individual microbial responses to the presence of others. This will allow us to answer important questions including: Which intermicrobial interactions orchestrate the myriad of cooperative, synergistic, antagonistic, manipulative, and other types of relationships and activities in the complex biofilm environment, and what are the implications for oral health and disease?


Assuntos
Proteômica , Streptococcus mutans , Biofilmes , Candida albicans , Humanos , Porphyromonas gingivalis
5.
FASEB J ; 33(9): 10515-10527, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31251083

RESUMO

Histone Lys-specific demethylases (KDMs) play a key role in many biological processes through epigenetic mechanisms. However, the role of KDMs in inflammatory responses to oral bacterial infection is poorly understood. Here, we show a novel regulatory role of KDM3C in inflammatory responses to oral bacterial infection. KDM3C expression is transiently suppressed in human and mouse macrophages exposed to LPS from Porphyromonas gingivalis (Pg LPS). Loss of KDM3C in both human and mouse macrophages led to notable induction of proinflammatory cytokines in response to Pg LPS stimulation. Also, KDM3C depletion led to strong induction of p65 phosphorylation and accelerated nuclear translocation in cells exposed to Pg LPS. Kdm3C knockout (KO) in mice led to increased alveolar bone destruction upon induction of experimental periodontitis or pulp exposure compared with those of the wild-type (WT) littermates. The Kdm3C KO mice also revealed an increased number of osteoclasts juxtaposed to the bony lesions. We also confirmed enhanced osteoclastogenesis by bone marrow-derived macrophages isolated from the Kdm3C KO compared with the WT controls. These findings suggest an anti-inflammatory function of KDM3C in regulating the inflammatory responses against oral bacterial infection through suppression of NF-κB signaling and osteoclastogenesis.-Lee, J. Y., Mehrazarin, S., Alshaikh, A., Kim, S., Chen, W., Lux, R., Gwack, Y., Kim, R. H., Kang, M. K. Histone Lys demethylase KDM3C demonstrates anti-inflammatory effects by suppressing NF-κB signaling and osteoclastogenesis.


Assuntos
Inflamação/prevenção & controle , Histona Desmetilases com o Domínio Jumonji/fisiologia , Doenças da Boca/prevenção & controle , NF-kappa B/antagonistas & inibidores , Osteogênese , Porphyromonas gingivalis/patogenicidade , Animais , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/microbiologia , Diferenciação Celular , Citocinas , Histonas , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Doenças da Boca/etiologia , Doenças da Boca/metabolismo , Doenças da Boca/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoclastos/microbiologia , Osteoclastos/patologia , Fosforilação , Transdução de Sinais
6.
Microb Ecol ; 78(2): 336-347, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30474730

RESUMO

Staphylococcus aureus, an opportunistic pathogen member of the nasal and skin microbiota, can also be found in human oral samples and has been linked to infectious diseases of the oral cavity. As the nasal and oral cavities are anatomically connected, it is currently unclear whether S. aureus can colonize the oral cavity and become part of the oral microbiota, or if its presence in the oral cavity is simply transient. To start addressing this question, we assessed S. aureus ability to directly bind selected members of the oral microbiota as well as its ability to integrate into a human-derived complex oral microbial community in vitro. Our data show that S. aureus forms aggregates with Fusobacterium nucleatum and Porphyromonas gingivalis and that it can incorporate into the human-derived in vitro oral community. Further analysis of the F. nucleatum-S. aureus interaction revealed that the outer-membrane adhesin RadD is partially involved in aggregate formation and that the RadD-mediated interaction leads to an increase in expression of the staphylococcal global regulator gene sarA. Our findings lend support to the notion that S. aureus can become part of the complex microbiota of the human mouth, which could serve as a reservoir for S. aureus. Furthermore, direct interaction with key members of the oral microbiota could affect S. aureus pathogenicity contributing to the development of several S. aureus associated oral infections.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fusobacterium nucleatum/metabolismo , Microbiota , Boca/microbiologia , Staphylococcus aureus/metabolismo , Transativadores/genética , Transativadores/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Biofilmes , Fusobacterium nucleatum/genética , Humanos , Ligação Proteica , Staphylococcus aureus/genética
7.
Proc Natl Acad Sci U S A ; 112(24): 7569-74, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034276

RESUMO

One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S. mutans suffered drastic reduction in their abundance, whereas S. mutans' natural competitors, including health-associated Streptococci, became dominant. This study demonstrates the use of targeted antimicrobials to modulate the microbiome structure allowing insights into the key community role of specific bacterial species and also indicates the therapeutic potential of C16G2 to achieve a healthy oral microbiome.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Microbiota/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Adulto , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Boca/microbiologia , Saliva/microbiologia , Streptococcus mutans/patogenicidade
8.
Proc Natl Acad Sci U S A ; 112(1): 244-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535390

RESUMO

The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200-300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of an Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Genoma Bacteriano/genética , Parasitos/genética , Filogenia , Simbiose , Actinomyces , Animais , Bactérias/classificação , Bactérias/ultraestrutura , Especificidade de Hospedeiro , Humanos , Macrófagos/metabolismo , Dados de Sequência Molecular , Boca/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia , Transcriptoma/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
J Prosthet Dent ; 118(4): 481-487, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28343672

RESUMO

STATEMENT OF PROBLEM: Peri-implantitis is considered the most important biological complication responsible for late implant failure. The physical chemical properties intrinsic to each material can affect the first step to biofilm development and is an important precursor to the adaptive behavior of pathogenic bacteria species. PURPOSE: The purpose of this in vitro study was to evaluate the effect of 2 commercially available implant abutment materials on the adhesion phase and biofilm formation. MATERIAL AND METHODS: Disks (8 mm in diameter, 2 mm thick) of machined pure titanium (Ti) and yttrium-stabilized zirconia (ZrO2) materials were used to mimic implant abutments. The physical chemical surface properties were investigated using different approaches. Initial adherent bacteria and biofilm formation were evaluated after 16 and 48 hours by incubating the disks in a rich medium containing representative saliva-derived oral microbial community. Unpaired t test, 2 tailed, was used to compare the groups. RESULTS: Ti presented lower hydrophobicity and surface free energy values than the ZrO2, and 6.1-fold fewer bacteria adhered to the Ti. After 48 hours, detailed quantitative analysis showed that biofilm biomass and biofilm density were lower on the Ti disks than on ZrO2. The quantity of phylotypes on the Ti and ZrO2 surfaces was relatively similar during the attachment and early biofilm formation periods. CONCLUSIONS: Although no difference in the bacteria profile was observed between both materials independent of the time point, the highest level of colonization was on ZrO2.


Assuntos
Aderência Bacteriana , Biofilmes , Dente Suporte , Implantes Dentários , Saliva/microbiologia , Titânio , Zircônio , Projeto do Implante Dentário-Pivô , Humanos , Técnicas In Vitro
10.
Microb Ecol ; 71(1): 243-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597961

RESUMO

Despite many examples of obligate epibiotic symbiosis (one organism living on the surface of another) in nature, such an interaction has rarely been observed between two bacteria. Here, we further characterize a newly reported interaction between a human oral obligate parasitic bacterium TM7x (cultivated member of Candidatus Saccharimonas formerly Candidate Phylum TM7), and its basibiont Actinomyces odontolyticus species (XH001), providing a model system to study epiparasitic symbiosis in the domain Bacteria. Detailed microscopic studies indicate that both partners display extensive morphological changes during symbiotic growth. XH001 cells manifested as short rods in monoculture, but displayed elongated and hyphal morphology when physically associated with TM7x. Interestingly, these dramatic morphological changes in XH001 were also induced in oxygen-depleted conditions, even in the absence of TM7x. Targeted quantitative real-time PCR (qRT-PCR) analyses revealed that both the physical association with TM7x as well as oxygen depletion triggered up-regulation of key stress response genes in XH001, and in combination, these conditions act in an additive manner. TM7x and XH001 co-exist with relatively uniform cell morphologies under nutrient-replete conditions. However, upon nutrient depletion, TM7x-associated XH001 displayed a variety of cell morphologies, including swollen cell body, clubbed-ends, and even cell lysis, and a large portion of TM7x cells transformed from ultrasmall cocci into elongated cells. Our study demonstrates a highly dynamic interaction between epibiont TM7x and its basibiont XH001 in response to physical association or environmental cues such as oxygen level and nutritional status, as reflected by their morphological and physiological changes during symbiotic growth.


Assuntos
Actinomyces/fisiologia , Fenômenos Fisiológicos Bacterianos , Boca/microbiologia , Actinomyces/genética , Actinomyces/crescimento & desenvolvimento , Actinomyces/isolamento & purificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Humanos , Fenótipo , Simbiose
11.
J Prosthodont ; 22(5): 344-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23790238

RESUMO

PURPOSE: Dentures are often colonized with a variety of microorganisms, including Candida albicans, that contribute to denture stomatitis. Several in vitro models have been previously established to study denture-related microbial colonization and evaluate treatment efficacy of denture cleansers; however, those models typically fail to appreciate the complex topology and heterogeneity of denture surfaces and lack effective ways to accurately measure microbial colonization. The purpose of this study was to study microbial colonization with a new model system based on real dentures, to more realistically mimic in vivo conditions. MATERIALS AND METHODS: Scanning electron microscopy was used to observe topological structures among surfaces from different parts of the denture. Employing C. albicans as a model microorganism, we established microbial colonization on different denture surfaces. Moreover, we applied a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) colorimetric assay to quantify C. albicans colonization on dentures without the necessity of biofilm removal and to evaluate treatment efficacy of denture cleansers. RESULTS: There were significant variations in topological structures among surfaces from different parts of the denture, with the unpolished side having the highest amounts of indentations and pores. The distinct denture surfaces support microbial colonization differently, with the unpolished side containing the highest level of microbial colonization and biofilm formation. Furthermore, the modified MTT colorimetric assay proved to be an accurate assay to measure biofilm formation on dentures and evaluate treatment efficacy of denture cleansers. CONCLUSION: This new denture model system in conjunction with the MTT colorimetric assay is a valuable tool to study denture-related microbiology and treatment approaches.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Dentaduras/microbiologia , Resinas Acrílicas/química , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Boratos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/ultraestrutura , Colorimetria/métodos , Corantes , Materiais Dentários/química , Bases de Dentadura/microbiologia , Higienizadores de Dentadura/farmacologia , Violeta Genciana , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Poliestirenos/química , Porosidade , Sulfatos/farmacologia , Propriedades de Superfície , Sais de Tetrazólio , Tiazóis , Dente Artificial/microbiologia
12.
J Oral Microbiol ; 15(1): 2149448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36452179

RESUMO

Background: Endodontic infections are known to be caused by pathogenic bacteria. Numerous previous studies found that both Fusobacterium nucleatum and Enterococcus faecalis are associated with endodontic infections, with Fusobacterium nucleatum more abundant in primary infection while Enterococcus faecalis more abundant in secondary infection. Little is known about the potential interactions between different endodontic pathogens. Objective: This study aims to investigate the potential interaction between F. nucleatum and E. faecalis via phenotypical and genetic approaches. Methods: Physical and physiological interactions of F. nucleatum and E. faecalis under both planktonic and biofilm conditions were measured with co-aggregation and competition assays. The mechanisms behind these interactions were revealed with genetic screening and biochemical measurements. Results: E. faecalis was found to physically bind to F. nucleatum under both in vitro planktonic and biofilm conditions, and this interaction requires F. nucleatum fap2, a galactose-inhibitable adhesin-encoding gene. Under our experimental conditions, E. faecalis exhibits a strong killing ability against F. nucleatum by generating an acidic micro-environment and producing hydrogen peroxide (H2O2). Finally, the binding and killing capacities of E. faecalis were found to be necessary to invade and dominate a pre-established in vitro F. nucleatum biofilm. Conclusions: This study reveals multifaceted mechanisms underlying the physical binding and antagonistic interaction between F. nucleatum and E. faecalis, which could play a potential role in the shift of microbial composition in primary and secondary endodontic infections.

13.
Microb Ecol ; 63(3): 532-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22202886

RESUMO

The development of multispecies oral microbial communities involves complex intra- and interspecies interactions at various levels. The ability to adhere to the resident bacteria or the biofilm matrix and overcome community resistance are among the key factors that determine whether a bacterium can integrate into a community. Fusobacterium nucleatum is a prevalent Gram-negative oral bacterial species that is able to adhere to a variety of oral microbes and has been implicated in playing an important role in the establishment of multispecies oral microbial community. However, the majority of experiments thus far has focused on the physical adherence between two species as measured by in vitro co-aggregation assays, while the community-based effects on the integration of F. nucleatum into multispecies microbial community remains to be investigated. In this study, we focus on community integration of F. nucleatum. We demonstrated using an established in vitro mice oral microbiota (O-mix) that the viability of F. nucleatum was significantly reduced upon addition to the O-mix due to cell contact-dependent induction of hydrogen peroxide (H(2)O(2)) production by oral community. Interestingly, this inhibitory effect was significantly alleviated when F. nucleatum was allowed to adhere to its known interacting partner species (such as Streptococcus sanguinis) prior to addition. Furthermore, this aggregate formation-dependent protection was absent in the F. nucleatum mutant strain ΔFn1526 that is unable to bind to a number of Gram-positive species. More importantly, this protective effect was also observed during integration of F. nucleatum into a human salivary microbial community (S-mix). These results suggest that by adhering to other oral microbes, F. nucleatum is able to mask the surface components that are recognized by H(2)O(2) producing oral community members. This evasion strategy prevents detection by antagonistic oral bacteria and allows integration into the developing oral microbial community.


Assuntos
Aderência Bacteriana , Fusobacterium nucleatum/fisiologia , Doenças da Boca/microbiologia , Streptococcus sanguis/fisiologia , Adulto , Animais , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Saliva/microbiologia
14.
Microb Ecol ; 64(1): 152-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22318873

RESUMO

It is a well-recognized fact that the composition of human salivary microbial community is greatly affected by its nutritional environment. However, most studies are currently focused on major carbon or nitrogen sources with limited attention to trace elements like essential mineral ions. In this study, we examined the effect of iron availability on the bacterial profiles of an in vitro human salivary microbial community as iron is an essential trace element for the survival and proliferation of virtually all microorganisms. Analysis via a combination of PCR with denaturing gradient gel electrophoresis demonstrated a drastic change in species composition of an in vitro human salivary microbiota when iron was scavenged from the culture medium by addition of the iron chelator 2,2'-bipyridyl. This shift in community profile was prevented by the presence of excessive ferrous iron (Fe(2+)). Most interestingly, under iron deficiency, the in vitro grown salivary microbial community became dominated by several hemolytic bacterial species, including Streptococcus spp., Gemella spp., and Granulicatella spp. all of which have been implicated in infective endocarditis. These data provide evidence that iron availability can modulate host-associated oral microbial communities, resulting in a microbiota with potential clinical impact.


Assuntos
Bactérias/isolamento & purificação , Ferro/metabolismo , Saliva/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Feminino , Humanos , Ferro/análise , Masculino , Metagenoma , Filogenia , Saliva/química
15.
J Oral Sci ; 64(4): 290-293, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104181

RESUMO

PURPOSE: This study was designed to compare the levels of Streptococcus mutans (S. mutans) in saliva with those in occlusal plaque on posterior teeth at different stages of dentition, and to explore the correlation with caries experience to determine the most suitable source of S. mutans for research. METHODS: Samples of saliva and occlusal plaque were collected from 83 patients (aged 3-17 years) over three months. S. mutans levels were determined by culture-based selective plating, morphological identification, and S.mutans-specific monoclonal antibody labeling. RESULTS: The mean age of the participants was 8.8 (±3.7) years, and 74.7% of them were Hispanic. Mean caries experience for children with primary, mixed, and permanent dentition was 5.2 (±4.7), 4.0 (±3.3), and 0.8 (±1.3), respectively. Children with primary and mixed dentition had a higher caries experience than children with permanent dentition (P < 0.01), despite having similar S. mutans levels and total bacteria. A positive correlation was observed between S. mutans levels in plaque and those in saliva, but not between S. mutans levels and caries experience. It was noteworthy that plaque samples harbored higher S. mutans levels (>105 CFU/mL) than saliva samples. CONCLUSION: Both plaque and saliva samples are useful sources for S. mutans isolation. S. mutans levels from both sources were not significantly correlated with caries experience, but occlusal plaque had greater sensitivity for quantification of high S. mutans levels.


Assuntos
Cárie Dentária , Placa Dentária , Dente , Criança , Pré-Escolar , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Humanos , Saliva/microbiologia , Streptococcus mutans
16.
J Periodontol ; 93(9): 1314-1324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239185

RESUMO

BACKGROUND: The purpose of this study was to evaluate the results of adjunctive Er,Cr:YSGG laser therapy with scaling and root planing (SRP) as compared with SRP alone in the treatment of moderate to severe periodontitis. METHODS: Fifteen adults (aged 27 to 65 years) with 90 nonadjacent sites probing ≥ 5 mm were treated in split-mouth design with SRP and laser therapy versus SRP alone. Probing pocket depth (PPD), gingival recession (GR), clinical attachment level (CAL), plaque, and bleeding on probing were collected at baseline, 1, 3, 6, 9, and 12 months. Patient reported outcomes were measured to assess pain, sensitivity, and satisfaction. RESULTS: Clinical improvements were similar for test and control sites with no statistically significant difference. At 12 months, the average PPD reduced from 6.1 to 4.2 mm for test and 6.2 to 4.3 mm for control sites. GR increased by 0.4 mm at test and control sites. CAL increased from 6.8 to 5.3 mm for test and 6.9 to 5.5 mm for control sites. Clinical outcomes were stratified by baseline PPD ( = 5, = 6 and ≥7 mm) and analyzed for number of sites that reduced (≤4 mm). No significant difference was observed when the baseline PPD was 5 or 6 mm. Test sites with baseline PPD ≥7 mm demonstrated a statistically significant difference in the percentage of reduced sites when compared with controls at nine (P = 0.001) and 12 months (P = 0.044). CONCLUSIONS: Adjunctive Er,Cr:YSGG laser therapy with SRP provides similar clinical improvement in the treatment of moderate-severe periodontitis as SRP alone and may offer some advantage for deeper (≥7 mm) pockets.


Assuntos
Periodontite Crônica , Retração Gengival , Terapia a Laser , Periodontite , Adulto , Periodontite Crônica/radioterapia , Periodontite Crônica/cirurgia , Raspagem Dentária/métodos , Retração Gengival/radioterapia , Retração Gengival/cirurgia , Humanos , Periodontite/radioterapia , Periodontite/cirurgia , Projetos Piloto , Aplainamento Radicular/métodos
17.
Microorganisms ; 10(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36144381

RESUMO

The oral cavity contains a variety of ecological niches with very different environmental conditions that shape biofilm structure and composition. The space between the periodontal tissue and the tooth surface supports a unique anaerobic microenvironment that is bathed in the nutrient-rich gingival crevicular fluid (GCF). During the development of periodontitis, this environment changes and clinical findings reported a sustained level of calcium ion concentration in the GCF collected from the periodontal pockets of periodontitis patients. Here, we report the effect of calcium ion supplementation on human oral microbial biofilm formation and community composition employing an established SHI medium-based in vitro model system. Saliva-derived human microbial biofilms cultured in calcium-supplemented SHI medium (SHICa) exhibited a significant dose-dependent increase in biomass and metabolic activity. The effect of SHICa medium on the microbial community composition was evaluated by 16S rRNA gene sequencing using saliva-derived microbial biofilms from healthy donors and periodontitis subjects. In this study, intracellular microbial genomic DNA (iDNA) and extracellular DNA (eDNA) were analyzed separately at the genus level. Calcium supplementation of SHI medium had a differential impact on iDNA and eDNA in the biofilms derived from healthy individuals compared to those from periodontitis subjects. In particular, the genus-level composition of the eDNA portion was distinct between the different biofilms. This study demonstrated the effect of calcium in a unique microenvironment on oral microbial complex supporting the dynamic transformation and biofilm formation.

18.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628722

RESUMO

Denture stomatitis (DS) is a common infection in denture wearers, especially women. This study evaluated the induction of DS using acrylic devices attached to the palate of rats combined with inoculation of Candida spp. Immunocompetent male and female rats received a carbohydrate-rich diet. Impressions were taken from the rats' palate to individually fabricate acrylic devices. Mono- and multispecies biofilms of C. albicans, C. glabrata, and C. tropicalis were grown on the devices, which were then cemented on posterior teeth and kept in the rats' palate for four weeks. Microbial samples from the palate and the device were quantified. Oral microbiome of rats inoculated with C. albicans was analyzed by 16S rRNA gene sequencing. Log10(CFU/mL) were analyzed by mixed or two-way MANOVA (α = 0.05). Candida spp. and acrylic device did not induce palatal inflammation macroscopically nor microscopically. Although there was an increase (p < 0.001) of the total microbiota and female rats demonstrated higher (p = 0.007) recovery of Candida spp. from the palate, the gender differences were not biologically relevant. The microbiome results indicate an increase in inflammatory microbiota and reduction in health-associated micro-organisms. Although Candida spp. and acrylic device did not induce DS in immunocompetent rats, the shift in microbiota may precede manifestation of inflammation.

19.
Microorganisms ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744648

RESUMO

Dental caries is multifactorial and polymicrobial in nature and remains one of the most common oral diseases. While caries research has focused on Streptococcus mutans as the main etiological pathogen, its impact at the tooth level is not fully understood. In this cross-sectional study, the levels and distribution of S. mutans in the posterior teeth at different dentition stages were investigated along with the corresponding tooth-specific microbiome. Occlusal plaque samples of 87 individual posterior teeth were collected from thirty children in three dentition stages (primary, mixed, and permanent). The S. mutans levels in the occlusal plaque of individual posterior teeth were quantified with qPCR, and those with preferential colonization were selected for tooth-specific microbiome analysis using 16S rRNA sequencing. Results: Quantification of S. mutans levels in the occlusal plaque confirmed the preferential colonization on the first primary and permanent molars. These teeth were selected for further tooth-specific microbiome sequencing, as they also displayed high caries experience. There were significant differences in the relative abundance of the four most abundant genera: Neisseria, Streptococcus, Rothia, and Veillonella. Furthermore, the tooth-level caries experience was correlated with a reduction in the microbiome diversity. Analyzing the different tooth-associated microbial communities, distinct tooth-specific core microbiomes were identified. Conclusions: Our findings suggest that caries susceptibility at the tooth level, depending on tooth type and dentition stage, is influenced by individual species as well as plaque community.

20.
Front Microbiol ; 13: 782825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250921

RESUMO

Dental caries remains the most common chronic disease in children, and the respective etiology is not fully understood. Though Streptococcus mutans is an important factor in the initiation and progression of caries, its presence is not always associated with the disease. The existence of caries discordant populations, in which S. mutans counts do not correlate with caries experience, poses a challenging problem. This study explored the possible correlation of S. mutans and other microorganism levels on caries-associated ecology of caries-concordant and discordant populations. A total of forty-seven children were analyzed in this study and stratified into four clinical groups based on their S. mutans levels in saliva (HS/LS: High/low S. mutans) and caries experience. Streptococcus mutans levels were determined by culture-based selective plating. The salivary microbiome of caries concordant and discordant populations was investigated by 16S rRNA gene sequencing and downstream bioinformatics analysis. The salivary microbial communities significantly clustered based on S. mutans levels and independent of their caries experience. In addition to S. mutans levels, significant differences in the abundance of other species were observed between HS and LS groups. Interestingly, disease-associated species such as Veillonella dispar, Streptococcus spp., and Prevotella spp. were significantly increased in HS groups and may contribute, in combination with S. mutans, to the caries progression. Furthermore, health-associated species exhibited higher abundance in the LS groups, such as Veillonella rogosae, Haemophilus sp., and Alloprevotella spp. but their possible contribution to the caries process remains to be elucidated. This study provides evidence that S. mutans may play a role in shaping the salivary microbial community. Our results highlight that future caries research should consider additional species as health/disease microbial markers in conjunction with S. mutans to improve diagnosis and caries management of the caries-discordant population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA