Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 86(7): 1719-1732, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36240307

RESUMO

The application of membrane technology in the field of water treatment was increasingly widespread, but membrane fouling still restricted its development, and the membrane needed to be chemically cleaned. This research focused on the high-efficiency pickling technology of ceramic membrane, and developed the cleaning technology of ceramic membrane in cooperation with surfactant. In the experiment, the municipal secondary effluent was used as the raw water, and the single-step, mixed and step-by-step cleaning effects of three strong acids, three weak acids and surfactants on ceramic membranes and polyvinylidene difluoride (PVDF) membranes were investigated. For ceramic membrane, the optimal cleaning combination was H2SO4 first and then DTAC, and the flux recovery rate could reach 96.94%; for PVDF membrane, the optimal cleaning combination was HNO3 first and then H2SO4, and the flux recovery rate could reach 93.72%. In addition, the surface of initial, polluted, and cleaned membranes were analyzed by scanning electron microscope and contact angle, and the fouling mechanism of the ceramic membrane was analyzed. The results showed that through physical cleaning and chemical cleaning, most of the pollutants on the membrane surface and pores were removed. The cleaning method can effectively control the membrane pollution.


Assuntos
Poluentes Ambientais , Purificação da Água , Cerâmica , Polímeros de Fluorcarboneto , Membranas Artificiais , Polivinil , Tensoativos , Tecnologia , Purificação da Água/métodos
2.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691381

RESUMO

Gelation-mediated phase separation is applied to prepare immiscible polymer bilayer films with an interlocking interface structure. Polymer systems consisting of copolymer of urea and polydimethylsiloxane and epoxy are selected to demonstrate the feasibility. When the epoxy fraction exceeds 25 wt%, well-defined bilayer structures self-form by a one-pot casting method in which the phase separation state is fixed by an evaporation-induced gelation. Microscopy studies of the resulting bilayers clearly reveal that interlocking structures form during the bilayer films construct. The interlocking structures lead to an enhanced interfacial adhesion and higher fracture energy. The current strategy might offer a facile way to in situ create an interlocking interface between immiscible polymer systems.


Assuntos
Técnicas de Química Analítica/instrumentação , Polímeros/síntese química , Dimetilpolisiloxanos/química , Géis , Ureia/química
3.
Int J Implant Dent ; 7(1): 61, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33928458

RESUMO

Several authors have suggested that implants can be placed simultaneously with onlay bone grafts without affecting outcomes. Therefore, the purpose of this study was to answer the following clinical questions: (1) What are the outcomes of implants placed simultaneously with autogenous onlay bone grafts? And (2) is there a difference in outcomes between simultaneous vs delayed placement of implants with autogenous onlay bone grafts? Databases of PubMed, Embase, and Google Scholar were searched up to 15 November 2020. Data on implant survival was extracted from all the included studies (single arm and comparative) to calculate point estimates with 95% confidence intervals (CI) and pooled using the DerSimonian-Laird meta-analysis model. We also compared implant survival rates between the simultaneous and delayed placement of implants with data from comparative studies. Nineteen studies were included. Five of them compared simultaneous and delayed placement of implants. Dividing the studies based on follow-up duration, the pooled survival of implant placed simultaneously with onlay grafts after <2.5 years of follow-up was 93.1% (95% CI 82.6 to 97.4%) and after 2.5-5 years was 86% (95% CI 78.6 to 91.1%). Implant survival was found to be 85.8% (95% CI 79.6 to 90.3%) with iliac crest grafts and 95.7% (95% CI 83.9 to 93.0%) with intra-oral grafts. Our results indicated no statistically significant difference in implant survival between simultaneous and delayed placement (OR 0.43, 95% 0.07, 2.49, I2=59.04%). Data on implant success and bone loss were limited. Data indicates that implants placed simultaneously with autogenous onlay grafts have a survival rate of 93.1% and 86% after a follow-up of <2.5 years and 2.5-5years respectively. A limited number of studies indicate no significant difference in implant survival between the simultaneous and delayed placement of implants with onlay bone grafts. There is a need for randomized controlled trials comparing simultaneous and delayed implant placement to provide robust evidence.


Assuntos
Aumento do Rebordo Alveolar , Transplante Ósseo , Ílio , Taxa de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA