Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299398

RESUMO

Rice straw hydrotropic lignin was extracted from p-Toluene sulfonic acid (p-TsOH) fractionation with a different combined delignification factor (CDF). Hydrotropic lignin characterization was systematically investigated, and alkaline lignin was also studied for the contrast. Results showed that the hydrotropic rice straw lignin particle was in nanometer scopes. Compared with alkaline lignin, the hydrotropic lignin had greater molecular weight. NMR analysis showed that ß-aryl ether linkage was well preserved at low severities, and the unsaturation in the side chain of hydrotropic lignin was high. H units and G units were preferentially degraded and subsequently condensed at high severity. High severity also resulted in the cleavage of part ß-aryl ether linkage. 31P-NMR showed the decrease in aliphatic hydroxyl groups and the increasing carboxyl group content at high severity. The maximum weight loss temperature of the hydrotropic lignin was in the range of 330-350 °C, higher than the alkaline lignin, and the glass conversion temperature (Tg) of the hydrotropic lignin was in the range of 107-125 °C, lower than that of the alkaline lignin. The hydrotropic lignin has high ß-aryl ether linkage content, high activity, nanoscale particle size, and low Tg, which is beneficial for its further valorization.


Assuntos
Lignina/química , Lignina/isolamento & purificação , Oryza/química , Água/química , Biomassa , Fracionamento Químico , Hidrólise , Lignina/análise
2.
Int J Biol Macromol ; 256(Pt 2): 128506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040143

RESUMO

Hansen solubility parameters (HSPs) play a critical role in the majority of processes involving lignin depolymerization, separation, fractionation, and polymer blending, which are directly related to dissolution properties. However, the calculation of lignin HSPs is highly complicated due to the diversity of sources and the complexity of lignin structures. Despite their important role, lignin HSPs have been undervalued, attracting insufficient attention. This review summarizes the calculation methods for lignin HSPs and proposes a straightforward method based on lignin subunits. Furthermore, it highlights the crucial applications of lignin HSPs, such as identifying ideal solvents for lignin dissolution, selecting suitable solvents for lignin depolymerization and extraction, designing green solvents for lignin fractionation, and guiding the preparation of lignin-based composites. For instance, leveraging HSPs to design a series of solvents could potentially achieve sequential controllable lignin fractionation, addressing issues of low value-added applications of lignin resulting from poor homogeneity. Notably, HSPs serve as valuable tools for understanding the dissolution behavior of lignin. Consequently, we expect this review to be of great interest to researchers specializing in lignin and other macromolecules.


Assuntos
Lignina , Polímeros , Lignina/química , Solubilidade , Solventes/química , Fracionamento Químico
3.
Int J Biol Macromol ; 229: 861-872, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36587642

RESUMO

To develop a characteristic "Lignin-first" strategy, the oxy-organosolv delignification processes under mild conditions were comprehensively investigated. Results showed that lignin yield could achieve about 50 % under the optimum process conditions of ethanol concentration 80 %, temperature 90 °C, liquid to wheat straw ratio 25:1 for powdery-scale substrates, which was 65.0 % higher than that for rod-scale substrates under the same conditions. The lignin structural and carbohydrate component results demonstrated the employment of oxygen induced great quantities of lignin dissolving out on the premise of little carbohydrate component (<1 %) and lignin structural (mainly ß-O-4 units) changes. Moreover, based on the molecular weight and polydiversity comparison results, the aqueous oxygen could transfer homogeneously in mild organosolv system and result in lignin degradation uniformly. Besides, the employment of oxygen assisted in not only extending the massive lignin removal stage to 30 min and 50 min for P-OEEL and R-OEEL respectively, but also boost the delignification rate with comparison to P-EL and R-EL. Lastly, the excellent anti-oxidant properties of lignin from oxy-organosolv process were demonstrated by scavenging DPPH and ABTS radicals. The economic calculations showed that the cost for lignin production were about 1.58USD/g lignin from powdery-scale wheat straw, providing a competitive route for high-value utilize waste biomass.


Assuntos
Lignina , Triticum , Lignina/química , Triticum/química , Solventes/química , Etanol/química , Carboidratos , Hidrólise
4.
Sci Rep ; 12(1): 19136, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352251

RESUMO

Lignin is a natural and renewable aromatic polymer, but only about 2% of lignin is utilized with high added value. Polydispersity and heterogeneity are the key reasons for the difficulty in separation, fractionation, characterization, purification and utilization of lignin. However, the molecular weight of lignin is still described from the overall perspective of number-/weight-average molecular weight (Mn and Mw), which if far from enough to understand the heterogeneous and dispersed lignin. To provide a tool for understanding the molecular weight of lignin from a molecular perspective, an integral method for quantifying the molecular characteristics of lignin molecules at arbitrary molecular intervals on the molecular weight distribution curve of lignin was established. The molecular contents of wheat straw lignin as well as its soluble and insoluble fractions at different intervals were calculated. The ease of fractionation of small molecules with weights lower than 8000 g/mol into soluble fractions, and that of large molecules with weights higher than 10,000 g/mol into insoluble fractions were quantitatively analyzed. The established integral method will significantly help in the understanding the properties of lignin at the molecular-level, as well as the fractionation and utilization of lignin.


Assuntos
Fracionamento Químico , Lignina , Fracionamento Químico/métodos , Triticum , Peso Molecular
5.
Int J Biol Macromol ; 182: 51-58, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798573

RESUMO

The separation of lignin from woody biomass and subsequent conversion into useful products requires a solution to the problem of its solubility. The expanded C9 formula of lignin, along with its atomic and functional groups, was determined by elemental analysis and NMRs spectroscopy. Based on the thus-obtained expanded C9 formula, the cohesion parameters of lignin dispersion (10.8-11.1 cal1/2·cm-3/2), polarity (4.15-4.31 cal1/2·cm-3/2), hydrogen bonding (6.30-7.38 cal1/2·cm-3/2), and solubility (13.2-14.0 cal1/2·cm-3/2) were respectively calculated using atomic and functional group contributions method. We established the relationship between lignin structure and lignin solubility parameters. The dissolution characteristics of wheat straw organic acid lignin, industrial eucalyptus kraft lignin, bamboo kraft lignin, and softwood kraft lignin in formic acid-H2O, acetic acid-H2O, and formic acid-acetic acid-H2O solvent systems were analyzed. The results indicate that the dissolution behavior of lignins follows the solubility parameters theory. We have developed a lignin dissolution model according to the lignin structure. This model obeys the solubility parameter theory, overcomes the limitations of the "like dissolves like" principle in organic acid-water systems, and provides a concise method for the selection of lignin solvent systems and the quantitative determination of their solvent composition.


Assuntos
Ácido Acético/química , Formiatos/química , Lignina/química , Solventes/química , Solubilidade , Triticum/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA