Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 57(29): 10870-10881, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431600

RESUMO

Efficient and sustainable methods for 99TcO4- removal from acidic nuclear waste streams, contaminated water, and highly alkaline tank wastes are highly sought after. Herein, we demonstrate that ionic covalent organic polymers (iCOPs) possessing imidazolium-N+ nanotraps allow the selective adsorption of 99TcO4- under wide-ranging pH conditions. In particular, we show that the binding affinity of the cationic nanotraps toward 99TcO4- can be modulated by tuning the local environment around the nanotraps through a halogenation strategy, thereby enabling universal pH 99TcO4- removal. A parent iCOP-1 possessing imidazolium-N+ nanotraps showed fast kinetics (reaching adsorption equilibrium in 1 min), a high adsorption capacity (up to 1434.1 ± 24.6 mg/g), and exceptional selectivity for 99TcO4- and ReO4- (nonradioactive analogue of 99TcO4-) removal in contaminated water. By introducing F groups near the imidazolium-N+ nanotrap sites (iCOP-2), a ReO4- removal efficiency over 58% was achieved in 60 min in 3 M HNO3 solution. Further, introduction of larger Br groups near the imidazolium-N+ binding sites (iCOP-3) imparted a pronounced steric effect, resulting in exceptional adsorption performance for 99TcO4- under super alkaline conditions and from low-activity waste streams at US legacy Hanford nuclear sites. The halogenation strategy reported herein guides the task-specific design of functional adsorbents for 99TcO4- removal and other applications.


Assuntos
Halogenação , Polímeros , Ânions , Água , Concentração de Íons de Hidrogênio
2.
Small ; 17(20): e2007994, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749108

RESUMO

Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane-based cationic polymeric network (CPN-tpm) nanotrap is designed, synthesized, and evaluated for ReO4- recovery. 3D building units are used to construct imidazolium salt-based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g-1 for ReO4- collection as well as fast kinetics ReO4- uptake. The sorption equilibrium is reached within 20 min and a kd value of 8.5 × 105 mL g-1 is obtained. The sorption capacity of CPN-tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN-tpm exhibits good recyclability for at least five cycles of the sorption-desorption process. This work provides a new route for constructing a kind of new high-performance polymeric material for rhenium recovery and rhenium-contained industrial wastewater treatment.


Assuntos
Rênio , Ânions , Polímeros , Águas Residuárias
3.
Angew Chem Int Ed Engl ; 57(32): 10192-10196, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29874402

RESUMO

Artificial muscles triggered by light are of great importance, especially for the development of non-contact and remotely controlled materials. Common materials for synthesis of photoinduced artificial muscles typically rely on polymer-based photomechanical materials. Herein, we are able to prepare artificial muscles using a mixed-matrix membrane strategy to incorporate photomechanical molecular crystals with connective polymers (e.g. PVDF). The formed hybrid materials inherit not only the advantages of the photomechanical crystals, including faster light response, higher Young's modulus and ordered structure, but also the elastomer properties from polymers. This new type of artificial muscles demonstrates various muscle movements, including lifting objects, grasping objects, crawling and swimming, triggered by light irradiation. These results open a new direction to prepare light-driven artificial muscles based on molecular crystals.


Assuntos
Luz , Polímeros/química , Estrutura Molecular , Polímeros/síntese química
4.
Chemosphere ; 346: 140600, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918540

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are man-made environmental contaminants causing increasing global concern due to their adverse effect on environmental and human health. Conventional treatment methods are ineffective in removing short-chain PFAS because they are persistent and recalcitrant to treatment. This study evaluated the performance of a structurally-tunable and chemically-stable porous organic polymer (POP) for PFAS removal under realistic environmental conditions. The POP demonstrated an exceptionally high removal efficiency (>95%) within 15 min when the initial PFAS concentration was approximately 400 ng/L. The adsorption of PFAS on the POP was not significantly affected by changes in solution pH within the range of 5-9. The common co-contaminants in water competed with short-chain PFAS for active sites during the adsorption process following the order of natural organic matter (NOM), long-chain PFAS, and Cl-. The Freundlich-type model could predict the multicomponent interactions well with a R2 value above 0.91. The spent POP was effectively regenerated using a mixture of the 10% NaCl and 30% methanol solution and the PFAS removal maintained at 90% through five adsorption and desorption cycles. The characteristics of the designed POP make it a highly promising and stable absorbent. It enables fast and effective removal of short-chain PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Adsorção , Polímeros , Água , Porosidade , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
5.
Nat Commun ; 13(1): 2132, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440580

RESUMO

Herein, we report a strategy to construct highly efficient perfluorooctanoic acid (PFOA) adsorbents by installing synergistic electrostatic/hydrophobic sites onto porous organic polymers (POPs). The constructed model material of PAF-1-NDMB (NDMB = N,N-dimethyl-butylamine) demonstrates an exceptionally high PFOA uptake capacity over 2000 mg g-1, which is 14.8 times enhancement compared with its parent material of PAF-1. And it is 32.0 and 24.1 times higher than benchmark materials of DFB-CDP (ß-cyclodextrin (ß-CD)-based polymer network) and activated carbon under the same conditions. Furthermore, PAF-1-NDMB exhibits the highest k2 value of 24,000 g mg-1 h-1 among all reported PFOA sorbents. And it can remove 99.99% PFOA from 1000 ppb to <70 ppt within 2 min, which is lower than the advisory level of Environmental Protection Agency of United States. This work thus not only provides a generic approach for constructing PFOA adsorbents, but also develops POPs as a platform for PFOA capture.


Assuntos
Fluorocarbonos , Polímeros , Sítios de Ligação , Caprilatos , Fluorocarbonos/química , Porosidade
6.
J Am Chem Soc ; 133(41): 16322-5, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21954963

RESUMO

An unprecedented nanoscopic polyhedral cage-containing metal-metalloporphyrin framework, MMPF-1, has been constructed from a custom-designed porphyrin ligand, 5,15-bis(3,5-dicarboxyphenyl)porphine, that links Cu(2)(carboxylate)(4) moieties. A high density of 16 open copper sites confined within a nanoscopic polyhedral cage has been achieved, and the packing of the porphyrin cages via an "ABAB" pattern affords MMPF-1 ultramicropores which render it selective toward adsorption of H(2) and O(2) over N(2), and CO(2) over CH(4).


Assuntos
Cobre/química , Metaloporfirinas/química , Nanoestruturas/química , Polímeros/química , Modelos Moleculares , Estrutura Molecular , Porosidade , Propriedades de Superfície
7.
Chem Commun (Camb) ; 56(73): 10631-10641, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930275

RESUMO

Nature has long been a dominant source of inspiration in the area of chemistry, serving as prototypes for the design of materials with proficient performance. In this Feature article, we present our efforts to explore porous organic polymers (POPs) as a platform for the construction of biomimetic materials to enable new technologies to achieve efficient conversions and molecular recognition. For each aspect, we first present the chemical basis of nature, followed by depicting the principles and design strategies involved for functionalizing POPs along with a summary of critical requirements for materials, culminating in a demonstration of unique features of POPs. Our endeavours in using POPs to address the fundamental scientific problems related to biomimetic catalysis and adsorption are then illustrated to show their enormous potential and capabilities for applications ranging from concerted catalysis to radionuclide sequestration. To conclude, we present a personal perspective on the challenges and opportunities in this emerging field.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Catálise , Porosidade
8.
Environ Pollut ; 253: 39-48, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302401

RESUMO

This work reports the architecture of a novel class of membrane-supported 1D MOF hollow superstructures, by using the bio-inspired polydopamine (PDA) mediated contra-diffusion synthetic strategy, for facile and efficient separation of uranium in a flow-through mode. PDA chemistry was firstly employed to modify the inner surfaces of the cylindrical pore channels of polycarbonate track-etched membrane (PCTM), thereby regulating the heterogeneous nucleation and interfacial growth of ZIF-8 crystals. ZIF-8 hollow superstructures embedded in membrane matrix with well-defined 1D channels were obtained. These membrane-supported MOF hollow superstructures then, for the first time, served as integrated chromatographic micro-column arrays for effective entrapment of uranium from aqueous solutions. It is highlighted that the PCTM supported ZIF-8 superstructures exhibited outstanding uranium entrapment ability in both traditional batch mode (capacity 62.3 mg/g) and fast flow-through mode (removal rate over 90% for 3 level). Moreover, new insights into the interaction between ZIF-8 and uranyl ions were obtained, suggesting that an ion-exchange mechanism involved synergistic effect was responsible for uranium binding, especially in a long-term exposure. The membrane-supported 1D MOF hollow superstructures developed in this work represent a new category of organic-inorganic composite membrane. And, it is envisioned that the methodology established in this work would be versatile for preparing more MOF superstructures with deployable form for separation applications. In summary, a novel class of membrane-supported ZIF-8 hollow superstructure was fabricated for effective separation of uranyl ions.


Assuntos
Indóis/química , Polímeros/química , Urânio/química , Íons , Modelos Químicos , Água/química
9.
Adv Mater ; 31(19): e1900008, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859646

RESUMO

Achieving high-performance biocomposites requires knowledge of the compatability between the immobilized enzyme and its host material. The modular nature of covalent organic frameworks (COFs), as a host, allows their pore geometries and chemical functionalities to be fine-tuned independently, permitting comparative studies between the individual parameters and the performances of the resultant biocomposites. This research demonstrates that dual pores in COFs have profound consequences on the catalytic activity and denaturation of infiltrated enzymes. This approach enforces a constant pore environment by rational building-block design, which enables it to be unequivocally determined that pore heterogeneity is responsible for rate enhancements of up to threefold per enzyme molecule. More so, the enzyme is more tolerant to detrimental by-products when occupying the larger pore in a dual-pore COF compared to a corresponding uniform porous COF. Kinetic studies highlight that pore heterogeneity facilitates mass transfer of both reagents and products. This unparalleled versatility of these materials allows many different aspects to be designed on demand, lending credence to their prospect as next-generation host materials for various enzyme biocomposites catalysts.


Assuntos
Materiais Biocompatíveis/química , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Estruturas Metalorgânicas/química , Desnaturação Proteica/efeitos dos fármacos , Catálise , Cinética , Estrutura Molecular , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície
10.
ChemSusChem ; 10(6): 1160-1165, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-27976539

RESUMO

Direct use of atmospheric CO2 as a C1 source to synthesize high-value chemicals through environmentally benign processes is of great interest, yet challenging. Porous heterogeneous catalysts that are capable of simultaneously capturing and converting CO2 are promising candidates for such applications. Herein, a family of organic ionic polymers with nanoporous structure, large surface area, strong affinity for CO2 , and very high density of catalytic active sites (halide ions) was synthesized through the free-radical polymerization of vinylfunctionalized quaternary phosphonium salts. The resultant porous ionic polymers (PIPs) exhibit excellent activities in the cycloaddition of epoxides with atmospheric CO2 , outperforming the corresponding soluble phosphonium salt analogues and ranking among the highest of known metal-free catalytic systems. The high CO2 uptake capacity of the PIPs facilitates the enrichment of CO2 molecules around the catalytic centers, thereby benefiting its conversion. We have demonstrated for the first time that atmospheric CO2 can be directly converted to cyclic carbonates at room temperature using a heterogeneous catalytic system under metal-solvent free conditions. Moreover, the catalysts proved to be robust and fully recyclable, demonstrating promising potential for practical utilization for the chemical fixation of CO2 . Our work thereby paves a way to the advance of PIPs as a new type of platform for capture and conversion of CO2 .


Assuntos
Atmosfera/química , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Polímeros/química , Adsorção , Catálise , Química Verde , Polímeros/síntese química , Porosidade
11.
Nat Commun ; 5: 5537, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25410491

RESUMO

Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury 'nano-trap' as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury 'nano-trap' exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g(-1), and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.


Assuntos
Quelantes , Descontaminação/métodos , Água Potável , Mercúrio , Nanoestruturas , Polímeros , Humanos , Soluções , Poluentes Químicos da Água , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA