Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2821-2824, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748170

RESUMO

Waveguide Bragg grating (WBG) blood glucose sensing, as a biological sensing technology with broad application prospects, plays an important role in the fields of health management and medical treatment. In this work, a polymer-based cascaded WBG is applied to glucose detection. We investigated photonic devices with two different grating structures cascaded-a crossed grating and a bilateral grating-and analyzed the effects of the crossed grating period, bilateral grating period, and number of grating periods on the sensing performance of the glucose sensor. Finally, the spectral reflectance characteristics, response time, and sensing specificity of the cascaded WBG were evaluated. The experimental results showed that the glucose sensor has a sensitivity of 175 nm/RIU in a glucose concentration range of 0-2 mg/ml and has the advantages of high integration, a narrow bandwidth, and low cost.


Assuntos
Glicemia , Polímeros , Polímeros/química , Glicemia/análise , Técnicas Biossensoriais/instrumentação
2.
Artif Organs ; 43(5): 490-503, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30375673

RESUMO

Protein-bound uremic toxins (PBUTs) accumulate at high plasma levels and cause various deleterious effects in end-stage renal disease patients because their removal by conventional hemodialysis is severely limited by their low free-fraction levels in plasma. Here, we assessed the extent to which solute removal can be increased by adding liposomes to the dialysate. The uptake of liposomes by direct incubation in vitro showed an obvious dose-response relationship for p-cresyl sulfate (PCS) and indoxyl sulfate (IS) but not for hippuric acid (HA). The percent removal of both PCS and IS but not of HA was gradually increased with the increased concentration of liposomes in a rapid equilibrium dialysis setup. In vitro closed circulation showed that adding liposomes to the dialysate markedly increased the dialysances of PBUTs without greatly altering that of urea and creatinine. In vivo experiments in uremic rats demonstrated that adding liposomes to the dialysate resulted in higher reduction ratios (RRs) and more total solute removal (TSR) for several PBUTs compared to the conventional dialysate, which was approximately similar to the addition of bovine serum albumin to the dialysate. These findings highlight that as an adjunct to conventional hemodialysis, addition of liposomes to the dialysate could significantly improve the removal of protein-bound uremic solutes without greatly altering the removal of small, water-soluble solutes.


Assuntos
Soluções para Diálise/química , Lipossomos/química , Diálise Renal/métodos , Toxinas Biológicas/isolamento & purificação , Uremia/sangue , Uremia/terapia , Animais , Cresóis/sangue , Cresóis/isolamento & purificação , Desenho de Equipamento , Hipuratos/sangue , Hipuratos/isolamento & purificação , Indicã/sangue , Indicã/isolamento & purificação , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Masculino , Ratos Sprague-Dawley , Diálise Renal/instrumentação , Ésteres do Ácido Sulfúrico/sangue , Ésteres do Ácido Sulfúrico/isolamento & purificação , Toxinas Biológicas/sangue , Uremia/etiologia
3.
Sci Total Environ ; 947: 174522, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981545

RESUMO

Black carbon (BC) formed after straw burning remains in farmland soil and coexists with plastic mulch film (PMF) debris. It is unclear how BC influences soil multifunctionality in the presence of PMF debris. In this study, we determined the joint effects of BC and PMF debris on soil biochemical properties and microbial communities. We conducted a soil microcosm experiment by adding BC formed by direct burning of wheat straw and PMF debris (polyethylene (PE) and biodegradable PMF (BP)) into soil at the dosages of 1 %, and soils were sampled on the 15th, 30th, and 100th day of soil incubation for high-throughput sequencing. The results showed that the degradation of PMF debris was accompanied by the release of microplastics (MPs). BC decreased NH4+-N (PE: 68.63 %; BP: 58.97 %) and NO3--N (PE: 12.83 %; BP: 51.37 %) and increased available phosphorus (AP) (PE: 79.12 %; BP: 26.09 %) in soil containing PMF debris. There were significant differences in enzyme activity among all the treatments. High-throughput sequencing indicated that BC reduced bacterial and fungal richness and fungal diversity in PMF debris-exposed soil, whereas PMF debris and BC resulted in significant changes in the proportion of dominant phyla and genera of bacteria and fungi, which were affected by incubation time. Furthermore, BC affected microorganisms by influencing soil properties, and pH and N content were the main influencing factors. In addition, FAPRPTAX analysis indicated that BC and PMF debris affected soil C and N cycling. These findings provide new insights into the response of soil multifunctionality to BC and PMF debris.


Assuntos
Bactérias , Fungos , Plásticos , Microbiologia do Solo , Poluentes do Solo , Solo , Triticum , Solo/química , Plásticos/análise , Poluentes do Solo/análise , Bactérias/classificação , Fuligem/análise , Microbiota , Micobioma
4.
Protein Cell ; 15(8): 612-632, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38577810

RESUMO

Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.


Assuntos
Envelhecimento , Gengiva , Transcriptoma , Proteínas de Sinalização YAP , Gengiva/metabolismo , Gengiva/patologia , Animais , Humanos , Envelhecimento/genética , Envelhecimento/metabolismo , Proteínas de Sinalização YAP/metabolismo , Queratinócitos/metabolismo , Células Epiteliais/metabolismo , Masculino
5.
Carbohydr Polym ; 347: 122643, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39486918

RESUMO

Injectable hydrogels with heterogeneous fibrous structures possessing good mechanical and biological characteristics are attracting increasing research interest in cartilage repair. The integration of nanofibers into hydrogel would largely enhance mechanical property, but impedes the gelation process and formation of hydrogel structures. Construction of biocompatible and mechanical supporting hydrogel with low fiber content remains a challenge. In this study, we developed a chemical cross-linked fibrous hydrogel, namely Thiol chitosan-Poly (lactic-co-glycolic acid)-Polydopamine (CSSH-PP), for facilitating cell proliferation and promoting cartilage tissues regeneration. Compared to conventional CSSH hydrogels, the compressive strength of CSSH-PP scaffolds exhibited a significant increase percentage of 100 %. Incorporation of CSSH-PP upgraded the cell migration with a four-fold increase. Besides, the infiltration of host cells and the formation of new blood vessels were observed in rat models when implanted with CSSH-PP, enhancing the native tissue microenvironmental reconstruction and leading a sustained repair in articular cartilage.


Assuntos
Proliferação de Células , Quitosana , Hidrogéis , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Regeneração/efeitos dos fármacos , Ratos , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Cartilagem Articular/efeitos dos fármacos , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polímeros/química , Compostos de Sulfidrila/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Movimento Celular/efeitos dos fármacos , Força Compressiva , Nanofibras/química , Indóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA