RESUMO
Light-tunable covalent chemistry is highly urgent in the fields of chemistry, biology, and materials science, especially for the smart materials and surface, due to the spatiotemporal control and feasible operation. Here, a new type of wavelength-selective photo-cycloaddition of styryl-anthracene carboxylic acid (SACA) is reported. Upon the irradiation of 450 nm visible light or 365 nm UV light, SACA can undergo [2+2] or [2+4] photocycloaddition, respectively. Furthermore, the [2+2] photocycloaddition induced by vis-light of 450 nm is reversible and can be disrupted by 365 nm UV light to form dimer-24 which cannot be photo-cleavable. Owing to the feasibility and spatiotemporal characteristics of UV-vis light-controlled photocycloaddition, the SACA possesses potential applications in various areas such as self-assembly, dynamic wrinkles, and fluorescence patterns, which are also explored and exhibited in this work.
Assuntos
Antracenos , Luz , Reação de Cicloadição , Polímeros , Raios UltravioletaRESUMO
In this study, mixed micelles of Soluplus® and TPGS were developed for co-administering docetaxel (DTX) and piperine (PIP) for exerting the synergistic effect, which increased the cytotoxicity and improved the anti-cancer activity in HepG2 cell lines compared to free DTX. These in vitro (MTT assay, intracellular uptake of micelles) and in vivo (pharmacokinetic study, immunostaining, TUNEL analysis) studies exhibited the advantages of co-delivery of anticancer drugs with Soluplus®/TPGS by mixed micelles and furthermore established that co-delivery of DTX and PIP via the mixed micelles of Soluplus®/TPGS could be a promising strategy for the treatment of liver cancer.
Assuntos
Alcaloides/química , Alcaloides/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Docetaxel/química , Docetaxel/farmacologia , Neoplasias/tratamento farmacológico , Piperidinas/química , Piperidinas/farmacologia , Polietilenoglicóis/química , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Polivinil/química , Vitamina E/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Ratos , Ratos Sprague-DawleyRESUMO
Fenretinide (4-HPR), as a semi-synthetic retinoid, has apoptosis-promoting effects as a single agent and chemotherapy synergist in vitro. When a human ovarian cancer cells line (A2780s) was treated with both PTX and 4-HPR, there was a synergistic anti-cancer effect demonstrated with a average combination index of 0.44. In this research, a new TPGS-Soluplus® mixed micelles were developed which encapsulation efficiencies of paclitaxel (PTX) and fenretinide (4-HPR) were as high as 98%, and the average diameter of the micelles was 66.26 nm. Cytotoxicity of the mixed micelles co-delivered with PTX and 4-HPR reduced significantly 7.3 and 25.1 times compared with free drug respectively in A2780s cells. More importantly, in vivo pharmacokinetic study, the loaded drugs in mixed micelles exhibited higher AUC and t1/2 values than free drugs. Furthermore, in vivo antitumor efficacy experiments demonstrated that PF-TS exhibited superior in vivo antitumor activity on the inhibition rate of tumor growth than other treatment groups (77.8% corresponding tumor growth inhibition in PF-TS treated group vs 19.9, 12.5, and 26.0% of tumor growth inhibition rate in Taxol®, 4-HPR, and Taxol®+4-HPR, respectively). Therefore, the mixed micelles of co-deliver PTX and 4-HPR successfully constructed may hopefully be applied to the cancer combination treatment with less toxic effect and more antitumor activity.
Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fenretinida/administração & dosagem , Micelas , Paclitaxel/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polivinil/administração & dosagem , Vitamina E/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Feminino , Fenretinida/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/farmacocinética , Polietilenoglicóis/farmacocinética , Polivinil/farmacocinética , Ratos , Ratos Wistar , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Vitamina E/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Fenretinide (4-HPR), a synthetic retinoid, has shown its antitumor activity in many tumor types with low cytotoxicity to normal cells and high clinical safety. However, the low water solubility limits its further biological applications. To increase solubility, 4-HPR was conjugated with methoxy polyethylene glycol carboxylic acid (mPEG2K-COOH) by an ester linkage between the phenol hydroxyl of 4-HPR and the carboxyl of mPEG2K-COOH. The 4-HPR-PEG2K conjugate micelles had mean size of 76.70 ± 1.248 nm with a narrow distribution and a low critical micelle concentration. In vitro cytotoxicity studies showed the micelles have higher cytotoxicity to A2780s and MCF-7 cells. Its IC50 was 4.7 and 4.1-fold lower than the free 4-HPR, respectively. Importantly, in vivo pharmacokinetic studies, the AUC of 4-HPR was found to be 2.3-fold higher in 4-HPR-PEG2K micelles compared to free 4-HPR. And the 4-HPR-PEG2K micelles had higher antitumor activity. Meanwhile, the histopathology analysis exhibited that the micellar treatment decreased the viability of A2780s cells and increased the level of induced apoptosis. Therefore, the enhanced activity of 4-HPR by the method of conjugation with mPEG2K-COOH could hopefully provide new insights into the matter of ovarian cancer and breast cancer treatment.
Assuntos
Antineoplásicos/farmacologia , Fenretinida/farmacologia , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacosRESUMO
Clinically, co-delivery of chemotherapeutics has been limited by poor water-solubility and severe systemic toxicity. This study was aimed at integrating the merits of combination chemotherapy and mixed micellar technology and demonstrating the anticancer potential of doxorubicin (DOX) and dihydroartemisinin (DHA) co-loaded Soluplus®-TPGS mixed micellar system. In this study, physiochemically stable multidrug loaded mixed micelles were successfully prepared, encapsulation efficiencies of DOX and DHA were as high as 90%, and the average diameter of the micelles was 64.27 nm. The cellular uptake of DOX from the mixed micelles increased by 1.3 and 1.2 times for MCF-7 and MCF-7/ADR cell lines, respectively. The micelles were more cytotoxic than free DHA-DOX. Surprisingly, the co-loaded mixed micelles exhibited higher antitumor activity, while the systemic toxicity was reduced during the treatment. Therefore, the DOX and DHA mixed micelle might be a potential, effective, and less toxic drug-delivery system for cancer therapy.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Doxorrubicina/administração & dosagem , Polietilenoglicóis/química , Polivinil/química , Vitamina E/química , Antibióticos Antineoplásicos/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Combinação de Medicamentos , Feminino , Humanos , Células MCF-7 , MicelasRESUMO
A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG-PLH-VES/B nanoparticulate system has been demonstrated to provide a promising strategy for efficient delivery of DOX into MCF-7/ADR cancerous cells and reversing MDR.
Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Endossomos/metabolismo , Feminino , Histidina/química , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Polietilenoglicóis/química , alfa-Tocoferol/químicaRESUMO
An ultralarge sheet with remarkable lateral dimensions of 10 µm × 10 µm-20 µm × 20 µm is fabricated by the hierarchical self-assembly of porphyrin-ended hyperbranched poly(ether amine) (tetraphenylporphyrin (TPP)-hPEA) in solution. The obtained TPP-hPEA amphiphiles can self-assemble from ultrathin single-layered nanosheets with a thickness of 4 nm to ultralarge multilayered nanosheets with thicknesses from 30 to 70 nm. The lateral dimensions increase from 2 × 2 µm to 5 × 5 µm, and eventually to 10 × 10 µm. In-situ dynamic light scattering and UV-vis spectroscopy studies suggest a hierarchical growth self-assembly mechanism with a self-assembly process that relies on π-π stacking. This 2D self-assembly method provides a significant potential guide for the preparation of ultralarge nanosheets in solution.
Assuntos
Nanoestruturas/química , Polímeros/química , Porfirinas/química , Aminas/química , Éteres/química , Polímeros/síntese química , Porfirinas/síntese químicaRESUMO
In nature, sophisticated functional materials are created through hierarchical self-assembly of nanoscale motifs, which has inspired the fabrication of man-made materials with complex architectures for a variety of applications. Herein, a kinetic study on the self-assembly of spindle-like micelles preassembled from polypeptide graft copolymers is reported. The addition of dimethylformamide and, subsequently, a selective solvent (water) can generate a "reactive point" at both ends of the spindles as a result of the existence of structural defects, which induces the "polymerization" of the spindles into nanowires. Experimental results combined with dissipative particle dynamics simulations show that the polymerization of the micellar subunits follows a step-growth polymerization mechanism with a second-order reaction characteristic. The assembly rate of the micelles is dependent on the subunit concentration and on the activity of the reactive points. The present work reveals a law governing the self-assembly kinetics of micelles with structural defects and opens the door for the construction of hierarchical structures with a controllable size through supramolecular step polymerization.
Assuntos
Micelas , Nanofios/química , Polimerização , Polímeros/química , Simulação por Computador , Cinética , Microscopia Eletrônica , Modelos Químicos , Nanofios/ultraestrutura , Polímeros/síntese químicaRESUMO
This work aimed to develop and optimize several lipid nanocapsule formulations (LNCs) to encapsulate cisplatin (CDDP) for treatment of hepatocellular carcinoma. By comparing the effect of oil/surfactant ratio, lecithin content, and oil/surfactant type on LNC characteristics, two LNCs were selected as optimal formulations: HS15-LNC (Solutol HS 15/MCT/lecithin, 54.5:42.5:3%, w/w) and EL-LNC (Cremophor EL/MCT/lecithin, 54.5:42.5:3%, w/w). Both LNCs could effectively encapsulate CDDP with the encapsulation efficiency of 73.48 and 78.84%. In vitro release study showed that both LNCs could sustain the release CDDP. Moreover, cellular uptake study showed that C6-labeled LNCs could be effectively internalized by HepG2 cells. Cellular cytotoxicity study revealed that both LNCs showed negligible cellular toxicity when their concentrations were below 313 µg/mL. Importantly, CDDP-loaded LNCs exhibited much stronger cell killing potency than free CDDP, with the IC50 values decreased from 17.93 to 3.53 and 5.16 µM after 72-h incubation. In addition, flow cytometric analysis showed that the percentage of apoptotic cells was significantly increased after treatment with LNCs. Therefore, the prepared LNC formulations exhibited promising anti-hepatocarcinoma effect, which could be beneficial to hepatocellular carcinoma therapy.
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Nanocápsulas/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Cisplatino/química , Composição de Medicamentos , Excipientes , Células Hep G2 , Humanos , Cinética , Lecitinas/química , Lipídeos/química , Óleos/química , Polietilenoglicóis , Solubilidade , Ácidos Esteáricos , TensoativosRESUMO
Lignin-based carbon material can be utilized as carbonaceous adsorbents for the removal of toxic gaseous organic pollutants, while the poor heat-resistance limited its widely application. Here in, B-N co-doped lignin carbon (BN-C) with high thermal stability was synthesized, and the optimized BN-C (1:2) exhibited notably improved heat resistance with the decomposition temperature up to 505 °C, and excellent adsorption capacity for o-dichlorobenzene (o-DCB) (1510.0 mg/g) and toluene (947.3 mg/g), together with good cyclic stability over 10 cycles for o-dichlorobenzene. The existence of abundant hexagonal boron nitride (h-BN) with good thermal conductivity contributed to the superior heat-resistance of BN-C (1:2), and the high specific surface area (1764.5 m2/g), enriched hydroxyl functional groups and improved graphitization degree contributed to its enhanced adsorption performance. More importantly, BN-C (1:2) supported Ru could effectively remove o-DCB and toluene at wide temperature range (50-300 °C). The present work guided the development of heat-resistant lignin-derived adsorbent-catalyst for gaseous aromatic pollutants removal, which benefits both environmental protection and resource utilization.
Assuntos
Poluentes Atmosféricos , Lignina , Nitrogênio , Adsorção , Lignina/química , Catálise , Nitrogênio/química , Poluentes Atmosféricos/química , Temperatura Alta , Boro/química , Tolueno/química , Compostos de Boro/química , Carbono/químicaRESUMO
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Assuntos
Curcumina , DNA Catalítico , MicroRNAs , Nanopartículas , Neoplasias , Neoplasias Pancreáticas , Humanos , Terapia Fototérmica , Curcumina/farmacologia , Polietilenoglicóis/química , Neoplasias Pancreáticas/terapia , MicroRNAs/genética , Oligopeptídeos , Linhagem Celular Tumoral , Nanopartículas/química , Fototerapia/métodos , Neoplasias PancreáticasRESUMO
STUDY DESIGN: This study was designed to report our preliminary experience of intraoperative computed tomography (iCT) using a mobile scanner with integrated neuronavigation system (NNS). OBJECTIVE: The objective of this study was to assess the feasibility and potential utility of iCT with integrated NNS in individualized treatment of craniovertebral junction malformation (CVJM). SUMMARY OF BACKGROUND DATA: The surgical management of congenital craniovertebral anomalies is complex due to the relative difficulty in accessing the region, critical relationships of neurovascular structures, and the intricate biomechanical issues involved. METHODS: We reported our first 19 complex CVJM cases including 11 male and 8 female patients from January, 2009 to June, 2009 (mean age, 33.9 y; age range, 13 to 58 y). A sliding gantry 40-slice CT scanner was installed in a preexisting operating room. Image data was transferred directly from the scanner into the NNS using an automated registration system. We applied this technology to transoral odontoidectomy in 17 patients. Moreover, with the extra help of iCT integrated with NNS, odontoidectomy through posterior midline approach, and transoral atlantal lateral mass resection were, for the first time, performed for treatment of complex CVJM. RESULTS: NNS was found to correlate well with the intraoperative findings, and the recalibration was uneven in all cases with an accuracy of 1.6 mm (1.6: 1.2 to 2.0). All patients were clinically evaluated by Nurick grade criteria, and neurological deficits were monitored after 3 months of surgery. Fifteen patients (79%) were improved by at least 1 Nurick grade, whereas the grade did not change in 4 patients (21%). CONCLUSIONS: iCT scanning with integrated NNS was both feasible and beneficial for the surgical management of complex CVJM. In this unusual patient population, the technique seemed to be valuable in negotiating complex anatomy and achieving a safe and predictable decompression.
Assuntos
Vértebra Cervical Áxis/cirurgia , Atlas Cervical/cirurgia , Monitorização Intraoperatória/métodos , Neuronavegação/métodos , Procedimentos Neurocirúrgicos/métodos , Osso Occipital/cirurgia , Adolescente , Adulto , Vértebra Cervical Áxis/diagnóstico por imagem , Atlas Cervical/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osso Occipital/diagnóstico por imagem , Medicina de Precisão , Radiografia , Resultado do TratamentoRESUMO
Microplastics (MPs) are increasingly entering the urban aquatic ecosystems, and the environmental significance and health risks of plastisphere, a special biofilm on MPs, have received widespread attention. In this study, MPs of polylactic acid (PLA) and polyvinyl chloride (PVC) and quartzite were incubated in an urban water environment, and the tetracycline (TC) degradation ability was compared. Approximatedly 24% of TC biodegraded in 28 d in the water-quartzite system, which is significantly higher than that in the water-PLA (17.3%) and water-PVC systems (16.7%). Re-incubation of microorganisms in biofilms affirmed that quartzite biofilm has a higher TC degradation capacity than the plastisphere. According to high-throughput sequencing of 16S rRNA and metagenomic analysis, quartzite biofilm contained more abundant potential TC degrading bacteria, genes related to TC degradation (eutG, aceE, and DLAT), and metabolic pathways related to TC degradation. An oligotrophic environment on the quartzite surface might lead to the higher metabolic capacity of quartzite biofilm for unconventional carbons, e.g., TC. It is also found that, compared with quartzite biofilm, the distinct microbes in the plastisphere carried more antibiotic resistance genes (ARGs). Higher affinity of MPs surface to antibiotics may lead to higher antibiotics stress on the plastisphere, which further amplify the carrying capacity for ARGs of microorganisms in the plastisphere. Compared to the nondegradable PVC MPs, surface of the biodegradable PLA plastics harbored significantly higher amounts of biomass and ARGs. Compared to the mineral particles, the capability of plastisphere has lower ability to degrade unconventional carbon sources such as the refractory organic pollutants, due to the abundance of carbon sources (adsorbed organic carbon and endogenous organic carbon) on the MPs surface. Meanwhile, the stronger adsorption capacity for pollutants also leads to higher pollutant stress (such as antibiotic stress) in plastisphere, which in turn affects the microbiological characteristics of the plastisphere itself, such as carrying more ARGs.
Assuntos
Poluentes Ambientais , Plásticos , Antibacterianos , Carbono , Ecossistema , Microplásticos , Poliésteres , Cloreto de Polivinila , RNA Ribossômico 16S/genética , Tetraciclina , ÁguaRESUMO
Micropatterning various ion-based modality materials offers compelling advantages for functionality enhancement in iontronic pressure sensing, piezoionic mechanoreception, and skin-interfaced electrode adhesion. However, most existing patterning techniques for iontronic materials suffer from low flexibility and limited modulation capability. Herein, we propose a facile and robust method to fabricate hierarchical and asymmetrical iontronic micropatterns (denoted as HAIMs) through programmed regulation of the internal stress distribution and the local ionic migration among an iontronic host. The resultant HAIMs with arbitrarily regulated morphologies and region-dependent ionic electrical performance can be readily made via localized photodimerization of an anthracene-functionalized ionic liquid copolymer (denoted as An-PIL) and subsequent vapor oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT). Based on the piezoionic effect within the resultant distinct doped PEDOT, HAIMs can serve as a scalable iontronic potential generator. Successful syntheses of these fascinating micropatterns may accelerate the development of patterned iontronic materials in a flexible, programmable, and functionally adaptive form.
Assuntos
Líquidos Iônicos , Polímeros , PolimerizaçãoRESUMO
Herein, a smart nanohydrogel with endogenous microRNA-21 toehold is developed to encapsulate gemcitabine-loaded mesoporous silica nanoparticles for targeted pancreatic cancer therapy. This toehold mediated strand displacement method can simultaneously achieve specific drug release and miRNA-21 silencing, resulting in the up-regulation of the expression of tumor suppressor genes PTEN and PDCD4.
Assuntos
MicroRNAs , Nanopartículas , DNA/genética , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , NanogéisRESUMO
The utilization of lignin as carbonaceous material for pollution adsorption provides an alternative way for lignocellulose valorization. Here in, lignin-based adsorbents (i.e., LC-A, LC-B, and LC-C) were prepared and used for the removal of o-DCB (a toxic gaseous pollutant). LC-B exhibited the best adsorption capacity (718.2 mg/g) when comparing with LC-A (93.1 mg/g), LC-C (10.2 mg/g), and activated carbon (72.7 mg/g). LC-B also demonstrated excellent recycling stability with the adsorption capacity of 710.8 mg/g after five runs. More importantly, LC-B supported Ru adsorbent catalyst could effectively remove o-DCB with removal rate >80% under a wide range of temperature (50-300°C). The excellent performance of lignin-based adsorbents could be attributed to its abundant pore structure, high specific surface area (1618.55 m2/g), enhanced graphitization degree as well as the abundant hydroxyl functional groups. The present work provided a cost-effective strategy for pollution control by lignin-based material.
Assuntos
Carvão Vegetal , Lignina , Adsorção , Poluição Ambiental , TemperaturaRESUMO
BACKGROUND AND AIMS: Polychlorinated diphenyl ethers (PCDEs), which are among the members of persistent organic pollutants, and PCDEs have been determined in a number of environmental samples. The main possible sources are the technical production of chlorinated phenols and all processes of incomplete combustion. PCDEs were observed in the fly ash from a municipal waste incinerator (MWI). It was speculated that the condensation of chlorophenols with chlorobenzenes occurred via PCDEs to form polychlorinated dibenzofurans (PCDFs). Nevertheless, PCDEs formation from condensation of chlorophenols with chlorobenzenes has not been confirmed by experimental observation. The objective of this paper is to investigate the formation mechanism of PCDEs from the condensation of chlorophenols with chlorobenzenes. The results are expected to be helpful in understanding the formation of PCDEs and in controlling and abating PCDEs emissions from MWI. METHODS: The pyrolysis of pentachlorophenol (PCP) and/or polychlorobenzenes (PCBz) was carried out in a sealed glass tube. The reaction products were extracted and purified with K2CO3 solution. The samples were concentrated and then cleaned up on an alumina column. GC/MS was used for identification and quantification of reaction products. RESULTS AND DISCUSSION: The results showed that the pyrolysis of hexachlorobenzene (HCB) at 340 degrees C for 6 h led to the formation of decachlorodiphenyl ether (DCDE) (2.41 microg/mg) and octachlorodibenzo-p-dioxins (OCDD) (0.24 micropg/mg), while the pyrolysis of PCP yielded DCDE (13.08 microg/mg) and OCDD (180.13 microg/mg). In addition, the amount of DCDE formation from the pyrolysis of the mixture of PCP and HCB was 4.65 times higher than the total amount of DCDE formation from the pyrolysis of HCB and PCP, respectively. This indicated that PCP and HCB were prone to condensation and formation of DCDE. DCDE was the main congener of PCDEs from condensation of PCP with HCB at 340, 400 and 450 degrees C. A small amount of nonachlorodiphenyl ether (NCDE) was formed by dechlorination reaction at 450 degrees C. The condensation of PCP with 1,2,4,5-tetrachlorobenzene (Cl4Bz) formed 2,2',3,4,4',5,5',6-octachlorodiphenyl ether (OCDE). Small amounts of heptachlorodiphenyl ether (HpCDE) and hexachlorodiphenyl ether (HxCDE) were detected at 450 degrees C. Meanwhile, polychlorinated dibenzo-p-dioxins (PCDDs) and PCDFs were detected from the condensation of PCP and PCBz. CONCLUSIONS: Experimental studies clarified the behavior of the formation of PCDEs from condensation of polychlorophenols and PCBz. The condensation of polychlorophenols with PCBz formed PCDEs through elimination of HCl between polychlorophenols and PCBz molecules. Another pathway of PCDEs formation was elimination of H2O between two polychlorophenol molecules. In addition, dechlorination processes had caused the specific homologous pattern of PCDEs under higher temperatures.
Assuntos
Benzofuranos/química , Clorobenzenos/química , Poluentes Ambientais/química , Pentaclorofenol/química , Éteres Fenílicos/química , Polímeros/química , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados , IncineraçãoRESUMO
The purpose of this study was to optimize a novel biodegradable polymer for drug eluting stent (DES) applications. Degradation profiles of different poly(D,L-lactide-co-glycolide)/amorphous calcium phosphate (PLGA/ACP) composites coated on stents were studied both in vitro and in vivo for three months. For the in vitro study, stents were immersed into the phosphate buffered saline (37 °C, pH 7.4) with constant shaking. The polymer weight loss was measured weekly and morphological changes were analyzed. The results demonstrated that approximately 60% of polymer was degraded within the three-month period and there was no significant difference between the different PLGA/ACP composites. However, the composite of 50% PLGA (65/35) with 50% ACP showed a slightly faster degradation rate than other composites. Morphologically, all stent surfaces changed from a micro-porous before degradation to a corrugated solid micro-net-like structure at two months post degradation. Based on in vitro results, 65% PLGA (65/35) with 35% ACP) coated stents were selected and implanted into rat aortas (n = 12) for the in vivo study. Microscopic observation showed that no composite was found on any of the implanted stents at 12 weeks post implantation, which indicated the selected PLGA/ACP composite is desired for DES applications.
Assuntos
Materiais Biocompatíveis/metabolismo , Fosfatos de Cálcio/metabolismo , Stents Farmacológicos , Ácido Láctico/metabolismo , Ácido Poliglicólico/metabolismo , Polímeros/metabolismo , Animais , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Ácido Láctico/química , Teste de Materiais , Metais/química , Metais/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Ratos , Ratos Sprague-DawleyRESUMO
Paclitaxel and sirolimus are the two major drugs for the treatment of coronary arterial disease in current drug-eluting stents. The two drugs can effectively inhibit the in-stent restenosis through their independent pathways and show synergistic effect in preventing tumor tissue growth. We hypothesize that the combination of the two drugs in a drug-eluting stent (DES) can also effectively suppress the neointima growth in the stented artery. The present work was focused on the investigation of paclitaxel/sirolimus combination release profiles from a novel biodegradable polymer (poly (D, L-lactide-co-glycolide)/amorphous calcium phosphate, PLGA/ACP) coated stent both in vitro and in vivo. For the in vitro, the drug releasing profiles were characterized by measuring the drug concentration in a drug release medium (Dulbecco's phosphate buffered saline, DPBS, pH 7.4) at predetermined time points. For the in vivo, a rat aorta stenting model was employed. The results showed that both paclitaxel and sirolimus had a two-phase release profile both in vitro and in vivo, which is similar to the drug release profile of their individual coated DESs, and there is no evident of interference between two drugs. The data suggest that paclitaxel and sirolimus can be combined pharmacokinetically in a DES for the treatment of coronary arterial diseases.