Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(6): 181, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773548

RESUMO

Etoposide (ETO), a traditional anticancer chemotherapeutic agent, is commercialized in oral soft gelatin capsules and non-aqueous parenteral solutions form. Novel formulation application and new excipients exploration are needed to improve the water-solubility and comfort of the drug administration. In the present study, novel etoposide-loaded submicron emulsions (ESE) with the biosurfactants of acidic sophorolipid (ASL) and lactonic sophorolipid (LSL) instead of the chemical surfactant of Tween-80 were prepared and characterized. Firstly, parameters of medium-chain triglyceride: long-chain triglyceride (MCT:LCT), lecithin concentration, homogenization pressure and cycle, and type and concentration of surfactants were investigated to optimize the formation of ESEs. Then the physicochemical properties, antitumor activity, stability, and security of ESEs were compared. The results showed that ASL performed the best properties and activities than Tween-80 and LSL in ESE formation. ASL-ESE showed higher drug loading capacity, slower release rate, and significantly increased antitumor activity against ovarian cancer cell line A2780 via apoptosis than Tween-ESE and commercial ETO injection. Besides, both ASL-ESE and Tween-ESE caused no hemolysis, and the safe dose of ASL was 2.14-fold that of Tween-80 in the hemolysis test, making ASL more reliable for drug delivery applications. Furthermore, ASL-ESE exhibited equivalent long-term and autoclaving stability to Tween-ESE. These results thus suggested the excellent competences of ASL in ESE formation, efficacy enhancement, and safety improvement.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Emulsões/química , Etoposídeo , Excipientes , Feminino , Humanos , Ácidos Oleicos , Polissorbatos , Tensoativos/química , Triglicerídeos/química
2.
Chemistry ; 26(50): 11604-11613, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32573862

RESUMO

Hydrogels used as strain sensors often rely on splicing tapes to attach them to surfaces, which causes much inconvenience. Therefore, to develop strain sensor hydrogels that possess both good mechanical properties and self-adhesion is still a great challenge. Inspired by the multiple hydrogen bonding interactions of nucleobases in DNA, we designed and synthesized a series of hydrogels PAAm-GO-Aba/Tba/Aba+Tba comprising polyacrylamide (PAAm), graphene oxide (GO), acrylated adenine and thymine (Aba and Tba). The introduction of nucleobases helps hydrogels to adhere to various substrates through multiple hydrogen-bonding interactions. It has also been found that the adhesive strength of hydrogels with nucleobases for hogskin increased to 2.5 times that of those without nucleobases. Meanwhile, these hydrogels exhibited good dynamic mechanical and self-recovery properties. They can be directly attached to human skin as strain sensors to monitor the motions of finger, wrist, and elbow. Electrical tests indicate that they give precise real-time monitoring data and exhibit good strain sensitivity and electrical stability. This work provides a promising basis from which to explore the fabrication of tough, self-adhesive, and strain-sensitive hydrogels as strain sensors for applications in wearable devices and healthcare monitoring.


Assuntos
Hidrogéis , Cimentos de Resina , Dispositivos Eletrônicos Vestíveis , Adesivos , Animais , DNA/química , Humanos , Hidrogéis/química , Movimento (Física)
3.
BMC Cancer ; 20(1): 665, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677906

RESUMO

BACKGROUND: Based on its low toxicity, arginine starvation therapy has the potential to cure malignant tumors that cannot be treated surgically. The Arginine deiminase (ADI) gene has been identified to be an ideal cancer-suppressor gene. ADI expressed in the cytosol displays higher oncolytic efficiency than ADI-PEG20 (Pegylated Arginine Deiminase by PEG 20,000). However, it is still unknown whether cytosolic ADI has the same mechanism of action as ADI-PEG20 or other underlying cellular mechanisms. METHODS: The interactions of ADI with other protein factors were screened by yeast hybrids, and verified by co-immunoprecipitation and immunofluorescent staining. The effect of ADI inhibiting the ferritin light-chain domain (FTL) in mitochondrial damage was evaluated by site-directed mutation and flow cytometry. Control of the mitochondrial apoptosis pathway was analyzed by Western Blotting and real-time PCR experiments. The effect of p53 expression on cancer cells death was assessed by siTP53 transfection. Chromatin autophagy was explored by immunofluorescent staining and Western Blotting. RESULTS: ADI expressed in the cytosol inhibited the activity of cytosolic ferritin by interacting with FTL. The inactive mutant of ADI still induced apoptosis in certain cell lines of ASS- through mitochondrial damage. Arginine starvation also generated an increase in the expression of p53 and p53AIP1, which aggravated the cellular mitochondrial damage. Chromatin autophagy appeared at a later stage of arginine starvation. DNA damage occurred along with the entire arginine starvation process. Histone 3 (H3) was found in autophagosomes, which implies that cancer cells attempted to utilize the arginine present in histones to survive during arginine starvation. CONCLUSIONS: Mitochondrial damage is the major mechanism of cell death induced by cytosolic ADI. The process of chromatophagy does not only stimulate cancer cells to utilize histone arginine but also speeds up cancer cell death at a later stage of arginine starvation.


Assuntos
Cromatina/metabolismo , Ferritinas/metabolismo , Hidrolases/metabolismo , Mitocôndrias/patologia , Neoplasias/patologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Arginina/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Citosol/metabolismo , Histonas/metabolismo , Humanos , Hidrolases/farmacologia , Hidrolases/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
4.
Biomacromolecules ; 20(10): 3672-3683, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31513395

RESUMO

Since adhesive hydrogels showed wide applications ranging from wearable soft materials to medical sealants, more and more attention has been paid toward the exploration of novel adhesive hydrogels. However, the difficulty in removing the residue caused by the excessive adhesive strength and sluggish degradation or nondegradation behaviors of the adhesive has always been challenging. Inspired by the multiple complementary hydrogen bond interactions in DNA, the bioinspired nucleobase (A, T, and U) monomers were first synthesized and used to tackify polyphosphoester hydrogels. The multiple hydrogen bonds and hydrophobic interactions between purine rings and pyrimidine functionalities endowed the hydrogels with excellent controllable adhesive properties. Besides this, it has been found that these nucleobase-tackified hydrogels could be easily peeled off without leaving any residue and could be totally degraded under alkaline conditions due to hydrolysis of phosphoester chains. At the same time, they also exhibited controllable biodegradation to different extents under the different pH conditions. The excellent adhesive performance, controllable biodegradation, and excellent biocompatibility showed by this nucleobase-tackified polyphosphoester adhesive hydrogel demonstrated its great potential in wound dressing, as a tissue sealant, and so on.


Assuntos
Adesivos/química , DNA/química , Hidrogéis/química , Purinas/química , Pirimidinas/química , Células 3T3 , Acrilatos/química , Animais , Materiais Biocompatíveis/química , Plásticos Biodegradáveis/química , Camundongos , Organofosfatos/química
6.
Mol Pharm ; 15(5): 1814-1825, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29537266

RESUMO

Selective drug accumulation in the malignant tissue is a prerequisite for effective cancer treatment. However, most drug molecules and their formulated particles are blocked en route to the destiny tissue due to the existence of multiple biological and physical barriers including the tumor microvessel endothelium. Since the endothelial cells on the surface of the microvessel wall can be modulated by inflammatory cytokines and chemokines secreted by the tumor or stromal cells, an effective drug delivery approach is to enhance interaction between the drug particles and the unique spectrum of surface proteins on the tumor endothelium. In this study, we performed in vivo screening for thioaptamers that bind to the bone marrow endothelium with specificity in a murine model of lymphoma with bone marrow involvement (BMI). The R1 thioaptamer was isolated based on its high homing potency to bones with BMI, and 40-60% less efficiency in accumulation to healthy bones. In cell culture, R1 binds to human umbilical vein endothelial cells (HUVEC) with a high affinity ( Kd ≈ 3 nM), and the binding affinity can be further enhanced when cells were treated with a mixture of lymphoma cell and bone marrow cell conditioned media. Cellular uptake of R1 is through clathrin-mediated endocytosis. Conjugating R1 on to the surface of liposomal doxorubicin nanoparticles resulted in 2-3-fold increase in drug accumulation in lymphoma BMI. Taking together, we have successfully identified a thioaptamer that preferentially binds to the endothelium of lymphoma BMI. It can serve as an affinity moiety for targeted delivery of drug particles to the disease organ.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , DNA/administração & dosagem , Linfoma/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos SCID , Polietilenoglicóis/farmacologia
7.
Biomacromolecules ; 17(6): 2223-32, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27151282

RESUMO

Rapid cellular uptake and efficient drug release in tumor cells are two of the major challenges for cancer therapy. Herein, we designed and synthesized a novel pH-responsive polymer-drug conjugate system poly(2-(methacryloyloxy)ethyl choline phosphate)-b-poly(2-methoxy-2-oxoethyl methacrylate-hydrazide-doxorubicin) (PCP-Dox) to overcome these two challenges simultaneously. It has been proved that PCP-Dox can be easily and rapidly internalized by various cancer cells due to the strong interaction between multivalent choline phosphate (CP) groups and cell membranes. Furthermore, Dox, linked to the polymer carrier via acid-labile hydrazone bond, can be released from carriers due to the increased acidity in lysosome/endosome (pH 5.0-5.5) after the polymer prodrug was internalized into the cancer cells. The cell viability assay demonstrated that this novel polymer prodrug has shown enhanced cytotoxicity in various cancer cells, indicating its great potential as a new drug delivery system for cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Fosforilcolina/análogos & derivados , Polímeros/administração & dosagem , Ácidos Polimetacrílicos/química , Pró-Fármacos/farmacologia , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosforilcolina/química , Polímeros/química , Pró-Fármacos/química
8.
Langmuir ; 29(36): 11413-9, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23944934

RESUMO

In polyelectrolyte multilayer (PEM) films assembled from poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) via the layer-by-layer deposition technique, the counterions were exchanged with silver ions, which were subsequently reduced in situ to produce silver (Ag) nanoparticles. The Ag nanoparticles embedded in the PEMs were found to undergo an interesting coarsening process over time, through which smaller Ag nanoparticles coalesce into larger ones until reaching an equilibrium. The process was investigated by monitoring the localized surface plasmon resonance of the Ag nanoparticles using UV-vis extinction spectroscopy, and the spectral evolution revealed an increase in nanoparticle size with time, a trend in qualitative agreement with theoretical calculation and further confirmed by transmission electron microscopy. The kinetics of the coarsening process and the size of Ag nanoparticles at equilibrium were found to be affected by the PEM structure as well as the temperature and relative humidity the PEM was exposed to, and coalescence was identified to be the mechanism.


Assuntos
Nanopartículas Metálicas/química , Polietilenos/química , Poliestirenos/química , Compostos de Amônio Quaternário/química , Prata/química , Umidade , Cinética , Tamanho da Partícula , Temperatura
9.
Macromol Rapid Commun ; 34(13): 1067-71, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23661408

RESUMO

Self-assembly of poly(2-vinylpyridine)-block-poly(ϵ-caprolactone) (P2VP-b-PCL) diblock copolymer in the presence of a selective solvent is investigated by transmission electron microscopy and atomic force microscopy. Addition of water into a P2VP-b-PCL solution in N,N-dimethylformamide at 20 °C produces elongated truncated lozenge shaped single crystals of uniform size and shape in large quantities. The single crystals are composed of PCL single-crystal layer sandwiched between two P2VP layers tethered on the top and bottom basal surfaces. The formation of the single crystals is found to depend on the temperature. These findings provide a facile approach to the preparation of uniform single crystals in large quantities.


Assuntos
Dimetilformamida/química , Poliésteres/química , Polivinil/química , Piridinas/química , Água/química , Cristalização , Micelas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Soluções , Propriedades de Superfície , Temperatura
10.
Structure ; 31(5): 541-552.e4, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040767

RESUMO

The human UBR5 is a single polypeptide chain homology to E6AP C terminus (HECT)-type E3 ubiquitin ligase essential for embryonic development in mammals. Dysregulated UBR5 functions like an oncoprotein to promote cancer growth and metastasis. Here, we report that UBR5 assembles into a dimer and a tetramer. Our cryoelectron microscopy (cryo-EM) structures reveal that two crescent-shaped UBR5 monomers assemble head to tail to form the dimer, and two dimers bind face to face to form the cage-like tetramer with all four catalytic HECT domains facing the central cavity. Importantly, the N-terminal region of one subunit and the HECT of the other form an "intermolecular jaw" in the dimer. We show the jaw-lining residues are important for function, suggesting that the intermolecular jaw functions to recruit ubiquitin-loaded E2 to UBR5. Further work is needed to understand how oligomerization regulates UBR5 ligase activity. This work provides a framework for structure-based anticancer drug development and contributes to a growing appreciation of E3 ligase diversity.


Assuntos
Antineoplásicos , Ubiquitina-Proteína Ligases , Animais , Humanos , Ubiquitina-Proteína Ligases/química , Microscopia Crioeletrônica , Ubiquitina , Domínio Catalítico , Mamíferos/metabolismo
11.
J Mater Chem B ; 10(14): 2728-2739, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35156115

RESUMO

Due to the emergence of wide-spread infectious diseases, there is a heightened need for antimicrobial and/or antifouling coatings that can be used to prevent infection and transmission in a variety of applications, ranging from healthcare devices to public facilities. While antimicrobial coatings kill pathogenic bacteria upon contact with the surface, the antimicrobial function alone often lacks long-term effectiveness due to the accumulation of dead cells and their debris on the surface, thus reducing the performance of the coating over time. Therefore, it is desirable to develop coatings with the dual functions of antimicrobial efficacy and fouling resistance, in which antifouling coatings provide the added benefit of preventing the adhesion of dead cells and debris. Leveraging the outstanding antifouling properties of zwitterionic coatings, we synthesized copolymers with this antimicrobial-antifouling dual function by immobilizing lysozyme, a common antimicrobial enzyme, to the surface of a pyridinium-based zwitterionic copolymer. Specifically, poly(4-vinylpyridine-co-pentaflurophenyl methacrylate-co-divinyl benzene) [P(4VP-PFPMA-DVB)] thin films were synthesized by an all-dry vapor deposition technique, initiated Chemical Vapor Deposition, and derivatized using 1,3-propane sultone to obtain sulfobetaine moieties. Lysozyme, known to hydrolyze polysaccharides in the cell wall of Gram-positive bacteria, was immobilized by forming amide bonds with the copolymer coating via nucleophilic substitution of the pentafluorophenyl group. The antifouling and antibacterial performance of the novel lysozyme-zwitterionic coating was tested against Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa. A reduction in surface adhesion of 87% was achieved for P. aeruginosa, and of 75% for B. subtilis, when compared to a common poly(vinyl chloride) surface. The lysozyme-zwitterionic coating also deactivated 67% of surface-attached Gram-positive bacteria, B. subtilis. This novel dual-function material can produce anti-infection surfaces for medical devices and surgical tools, personal care products, and surfaces in public facilities.


Assuntos
Incrustação Biológica , Polímeros , Antibacterianos/química , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Muramidase , Polímeros/química , Polímeros/farmacologia , Pseudomonas aeruginosa
12.
Endocr J ; 58(11): 931-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21869538

RESUMO

Rabson-Mendenhall syndrome (RMS) is a rare disorder that presents as severe insulin resistance as a result of mutations present in the insulin receptor (INSR). A Chinese girl with RMS presented with profound diabetes, hyperinsulinemia, acanthosis nigricans, hirsutism, and abnormalities of teeth and nails. Direct sequencing of the patient's INSR detected heterozygote mutations at Arg83Gln (R83Q) and Ala1028Val (A1028V), with the former representing a novel mutation. Functional studies of Chinese hamster ovary (CHO) cells transfected with wild-type (WT) and mutant forms of INSR were performed to evaluate the effects of these mutations on receptor expression and activation. Receptor expression, insulin binding activity, and phosphorylation of the R83Q variant were comparable to WT. In contrast, expression of the A1028V receptor was much lower than that of WT INSR, and impairment of insulin binding and autophosphorylation were nearly commensurate with the decrease in expression detected. Reductions in the phosphorylation of IRS-1, Akt, and Erk1/2 (60%, 40%, and 50% of WT, respectively) indicate that the A1028V receptor contributes to impaired signal transduction. In conclusion, INSR mutations associated with RMS were identified. Moreover, the A1028V mutation associated with a decrease in expression of INSR potentially accounts for loss of function of the INSR.


Assuntos
Síndrome de Donohue/genética , Receptor de Insulina/genética , Sequência de Aminoácidos , Animais , Povo Asiático , Sequência de Bases , Células CHO , Criança , Cricetinae , Síndrome de Donohue/metabolismo , Feminino , Variação Genética , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , RNA/química , RNA/genética , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transfecção
13.
Artigo em Inglês | MEDLINE | ID: mdl-34167955

RESUMO

INTRODUCTION: Saliva collection is a non-invasive test and is convenient. 1,5-anhydroglucitol (1,5-AG) is a new indicator reflecting short-term blood glucose levels. This study aimed to explore the relationship between saliva 1,5-AG and insulin secretion function and insulin sensitivity. RESEARCH DESIGN AND METHODS: Adult patients with type 2 diabetes who were hospitalized were enrolled. Based on blood glucose and C-peptide, homeostasis model assessment 2 for ß cell secretion function, C-peptidogenic index (CGI), △2-hour C-peptide (2hCP)/△2-hour postprandial glucose (2hPG), ratio of 0-30 min area under the curve for C-peptide and area under the curve for glucose (AUCCP30/AUCPG30), and AUC2hCP/AUC2hPG were calculated to evaluate insulin secretion function, while indicators such as homeostasis model assessment 2 for insulin resistance were used to assess insulin sensitivity. RESULTS: We included 284 subjects (178 men and 106 women) with type 2 diabetes aged 20-70 years. The saliva 1,5-AG level was 0.133 (0.089-0.204) µg/mL. Spearman's correlation analysis revealed a significantly negative correlation between saliva 1,5-AG and 0, 30, and 120 min blood glucose, glycated hemoglobin A1c, and glycated albumin (all p<0.05), and a significantly positive association between saliva 1,5-AG and CGI (r=0.171, p=0.004) and AUC CP30 /AUC PG30 (r=0.174, p=0.003). The above correlations still existed after adjusting for age, sex, body mass index, and diabetes duration. In multiple linear regression, saliva 1,5-AG was an independent factor of CGI (standardized ß=0.135, p=0.015) and AUC CP30 /AUC PG30 (standardized ß=0.110, p=0.020). CONCLUSIONS: Saliva 1,5-AG was related to CGI and AUCCP30/AUCPG30 in patients with type 2 diabetes. TRIAL REGISTRATION NUMBER: ChiCTR-SOC-17011356.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , China , Desoxiglucose , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Saliva/metabolismo
14.
Chem Commun (Camb) ; 56(41): 5552-5555, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32297607

RESUMO

We proposed a method using an aza-crown ether derivative to lock a hyperbranched polyethyleneimine, which endows the PEI25k with tumor targeting ability, anti-serum ability and extended circulation in the blood meanwhile retaining the high gene complexation and high transfection efficiency. The method we proposed here simultaneously endows cationic materials with high transfection efficiency and high safety, which greatly pushed the cationic materials to be applied in in vivo gene delivery.


Assuntos
Compostos Aza/química , Éteres de Coroa/química , Técnicas de Transferência de Genes , Polietilenoimina/química , Células A549 , Animais , Compostos Aza/administração & dosagem , Éteres de Coroa/administração & dosagem , Humanos , Injeções Intravenosas , Camundongos , Estrutura Molecular , Células NIH 3T3 , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais , Imagem Óptica , Tamanho da Partícula , Polietilenoimina/administração & dosagem , Propriedades de Superfície
15.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32170297

RESUMO

CONTEXT: Unlike other commonly used invasive blood glucose-monitoring methods, saliva detection prevents patients from suffering physical uneasiness. However, there are few studies on saliva 1,5-anhydroglucitol (1,5-AG) in patients with diabetes mellitus (DM). OBJECTIVE: This study aimed to evaluate the effectiveness of saliva 1,5-AG in diabetes screening in a Chinese population. DESIGN AND PARTICIPANTS: This was a population-based cross-sectional study. A total of 641 subjects without a valid diabetic history were recruited from September 2018 to June 2019. Saliva 1,5-AG was measured with liquid chromatography-mass spectrometry. MAIN OUTCOME MEASURES: DM was defined per American Diabetes Association criteria. The efficiency of saliva 1,5-AG for diabetes screening was analyzed by receiver operating characteristic curves, and the optimal cutoff point was determined according to the Youden index. RESULTS: Saliva 1,5-AG levels in subjects with DM were lower than those in subjects who did not have DM (both P < .05). Saliva 1,5-AG was positively correlated with serum 1,5-AG and negatively correlated with blood glucose and glycated hemoglobin (HbA1c) (all P < .05). The optimal cutoff points of saliva 1,5-AG0 and 1,5-AG120 for diabetes screening were 0.436 µg/mL (sensitivity: 63.58%, specificity: 60.61%) and 0.438 µg/mL (sensitivity: 62.25%, specificity: 60.41%), respectively. Fasting plasma glucose (FPG) combined with fasting saliva 1,5-AG reduced the proportion of people who required an oral glucose tolerance test by 47.22% compared with FPG alone. CONCLUSION: Saliva 1,5-AG combined with FPG or HbA1c improved the efficiency of diabetes screening. Saliva 1,5-AG is robust in nonfasting measurements and a noninvasive and convenient tool for diabetes screening.


Assuntos
Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Desoxiglucose/metabolismo , Diabetes Mellitus/diagnóstico , Programas de Rastreamento/métodos , Espectrometria de Massas/métodos , Saliva/metabolismo , Adolescente , Adulto , Idoso , Glicemia/análise , China/epidemiologia , Estudos Transversais , Desoxiglucose/análise , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Saliva/química , Adulto Jovem
16.
Infect Genet Evol ; 81: 104210, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32004757

RESUMO

Enterovirus 71 (EV71) is one of the main pathogens causing hand-foot-and-mouth disease (HFMD). The nose and mouth are usually the main infection entries of EV71 virus. However, its dynamic transport pathway from mouth to the whole body remains unknown. The reveal of this physiological mechanism in vivo will help to understand its transport direction, find its key proliferation nodes, and develop new preventive strategies. We trained a new strain of GFP-EV71 virus to be susceptible to mice brain by intracranial injection of mice. The adapted virus was oral-administrated to suckling mice. Then, the dynamic distributions of the virus in vivo were detected by living image system and fluorescence quantitation polymerase chain reaction (qPCR). We figured out the dynamic pathway of EV71 transport in vivo from intestine to peripheral tissue, then to the other organs. Small intestine was identified as a gateway for EV71 infection in vivo. Ileum was proved to be the main part of proliferation and transport of EV71 in small intestine of mice. EV71 was verified to enter small intestinal villus of mice through the infection of small intestinal epithelial cell. Acarbose displayed a good preventive effect on EV71 infection both in vivo and in vitro. Acarbose possibly decreased the intestinal infection of EV71 by blocking the receptor-binding sites on the surface of EV71 virion or by inhibiting various glycolic receptors on the cell surface. Thus, acarbose and its analogue may be the potential medicines to prevent EV71 infection.


Assuntos
Acarbose/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Enterovirus/efeitos dos fármacos , Intestinos/virologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/virologia , Doença de Mão, Pé e Boca/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos ICR
17.
Colloids Surf B Biointerfaces ; 66(2): 233-9, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18675539

RESUMO

Poly(PEGMA) homopolymer brushes were developed by atom transfer radical polymerization (ATRP) on the initiator-modified silicon surface (Si-initiator). Through covalent binding, protein immobilization on the poly(PEGMA) films was enabled by further NHS-ester functionalization of the poly(PEGMA) chain ends. The formation of polymer brushes was confirmed by assessing the surface composition (XPS) and morphology (atomic force microscopy (AFM), scanning electronic microscopy (SEM)) of the modified silicon wafer. The binding performance of the NHS-ester functionalized surfaces with two proteins horseradish peroxidase (HRP) and chicken immunoglobulin (IgG) was monitored by direct observation. These results suggest that this method which incorporates the properties of polymer brush onto the binding surfaces may be a good strategy suitable for covalent protein immobilization.


Assuntos
Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Metacrilatos/química , Polietilenoglicóis/química , Silício/química , Succinimidas/química , Aminação , Animais , Reações Antígeno-Anticorpo , Sítios de Ligação , Galinhas , Imunoglobulinas/química , Procedimentos Analíticos em Microchip , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Tamanho da Partícula , Sensibilidade e Especificidade , Espectrofotometria , Estereoisomerismo , Propriedades de Superfície , Raios X
18.
ACS Appl Mater Interfaces ; 9(19): 15986-15994, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28481098

RESUMO

Limited cellular uptake and inefficient intracellular drug release severely hamper the landscape of polymer drug nanocarriers in cancer chemotherapy. Herein, to address these urgent challenges in tumor treatment simultaneously, we integrated the multivalent choline phosphate (CP) and bioreducible linker into a single polymer chain, designed and synthesized a neoteric bioreducible polymer nanocarrier. The excellent hydrophility of these zwitterionic CP groups endowed high drug loading content and drug loading efficiency of doxorubicin to this drug delivery system (∼22.1 wt %, ∼95.9%). Meanwhile, we found that the multivalent choline phosphate can effectively enhance the internalization efficiency of this drug-loaded nanocarrier over few seconds, and the degree of improvement depended on the CP density in a single polymer chain. In addition, after these nanocarriers entered into the tumor cells, the accelerated cleavage of bioreducible linker made it possible for more cargo escape from the delivery system to cytoplasm to exert their cytostatic effects more efficiently. The enhanced therapeutic efficacy in various cell lines indicated the great potential of this system in anticancer drug delivery applications.


Assuntos
Fosforilcolina/química , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas , Polímeros
19.
Chem Commun (Camb) ; 49(81): 9302-4, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23999584

RESUMO

Highly water-soluble fullerene polymers were successfully prepared by a simple direct free-radical copolymerization of N-vinylpyrrolidone and intact C60 or C70 as a radical-capping agent. Using AIBN as a radical initiator, the polymers (C60- or C70-PVP) with significantly high molecular weight (~30 kDa) and with efficient (1)O2 generation were obtained.


Assuntos
Materiais Biocompatíveis/química , Fulerenos/química , Polivinil/química , Pirrolidinas/química , Espécies Reativas de Oxigênio/química , Polimerização , Solubilidade , Água/química
20.
Langmuir ; 20(14): 5679-82, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16459579

RESUMO

The phase boundaries of the middle-phase microemulsion for NaCl/SDS/H2O/1-heptane/1-pentanol systems in the absence of polymer and in the presence of unmodified poly(acrylamide) (PAM) and hydrophobically modified poly(acrylamide) (HMPAM) have been determined at varying salt concentrations. These three middle-phase microemulsions (with HMPAM, with PAM, and without polymer) were studied using interfacial tension measurement, steady-state fluorescence, and time-resolved fluorescence quenching. Compared to the polymer-free system and the system with PAM, the addition of HMPAM significantly enlarges the range of the salt concentrations for the formation of the middle-phase microemulison and causes both the excess oil and aqueous phases to increase in volume at the expense of the middle-phase microemulsion. For the middle-phase microemulsion with HMPAM, the interfacial tensions of the microemulsion phase with the excess oil phase and with the excess aqueous phase are all ultralow and exhibit higher values than those with PAM and without polymer. At the same salt concentration, the apparent surfactant aggregation number in the middle-phase microemulsion with HMPAM has the smallest value among these three systems. All results indicate that the strong interaction of surfactant with hydrophobically modified polymer has a large effect on the formation and properties of the middle-phase microemulsion.


Assuntos
Acrilamida/química , Polímeros/química , Emulsões , Heptanos/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Pentanóis/química , Transição de Fase , Cloreto de Sódio/química , Dodecilsulfato de Sódio/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA