Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Phys ; 46(2): 223-231, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32613446

RESUMO

Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Método de Monte Carlo
2.
J Environ Manage ; 260: 110062, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941625

RESUMO

A large number of polyethylene terephthalate (PET) bottles are discarded daily after usage. Thus, plastic bottle recycling has elicited considerable attention in recent years. In this context, this study aims to quantify the environmental and economic impacts of blanket production from 100% recycled waste plastic bottles in China through a life cycle assessment coupled with life cycle costing method. In addition, the environmental impact of replacing coal with natural gas and solar energy was evaluated. Results show that impact categories of global warming and fossil depletion have significant influence on the overall environment. Carbon dioxide, water, iron, coal and chromium (VI) to water are the main contributors to the overall environmental burden. The internal and external costs are $6433/metric ton and $370/metric ton, respectively. Analysis results indicate that the optimization of organic chemicals, recycled polyester filament and steam production processes can reduce environmental and economic burdens substantially. Energy substitutions with natural gas and the use of solar photovoltaic in steam production and electricity generation are effective measures for decreasing environmental impacts. Finally, suggestions based on research results and the current status of waste plastic bottle recycling in China are proposed.


Assuntos
Polietilenotereftalatos , Gerenciamento de Resíduos , China , Reciclagem , Água
3.
J Environ Manage ; 224: 10-18, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025260

RESUMO

China, as the world's largest crude steel producer, is suffering from water scarcity and pollution. However, only a few systematic analyses on the environmental burdens and improvements of China's crude steel production have been conducted. Therefore, it is important for research to be done how China's steel industry can be improved in environment management. To help decision-makers understand this, a life cycle water footprint analysis including gray and blue water was performed based on the methodology prescribed in the ISO 14046 standard. A life cycle assessment was also conducted to improve the environmental performance of the steel industry. Results of these assessments revealed that gray water footprint, which is mainly derived from aquatic eutrophication, carcinogens, and non-carcinogens, is higher than blue water footprint. Optimizing indirect processes, including iron ore mining, magnesium oxide production, transportation, and electricity generation, played dominant roles in the reduction of gray water footprint. Furthermore, COD, Cr (VI), phosphate, BOD5, Hg, As, nitrogen oxides, particulates, and sulfur dioxide were the key substances for environmental improvements. The underestimation of direct water footprint showed the importance and urgency of implementing scientific and adequate monitoring indicators. Meanwhile, the environmental burden can be reduced by adopting a reasonable location of the steel industry on the basis of regional water resources and actual transportation status, improving the efficiency of raw material consumption, and optimizing the power structure.


Assuntos
Aço , Recursos Hídricos , China , Indústrias , Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA