Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 206: 112598, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953887

RESUMO

The toxicity of microplastic particles (MPs) on aquatic environments has been widely reported; however, their effects on protists are still contradictory. For example, it is unclear if cell size and cell wall have a role in shaping the response of flagellates to MPs. In this study, seven marine flagellated microalgae (six Dinoflagellates and one Raphidophyceae) were incubated with 10 mg L-1 MPs (polystyrene plastic micro-spheres, 1 µm diameter) to address the above question by measuring different response variables, i.e., growth, optimal photochemical efficiency (Fv/Fm), chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, and cell morphology. The effect of MPs on growth and Fv/Fm showed species-specificity effects. Maximum and minimum MPs-induced inhibitions were detected in Karenia mikimotoi (76.43%) and Akashiwo sanguinea (10.16%), respectively, while the rest of the species showed intermediate responses. The presence of MPs was associated with an average reduction of Chl-a content in most cases and with a higher superoxide dismutase activity in all cases. Seven species were classified into two groups by the variation of Chl-a under MPs treatment. One group (Prorocentrum minimum and Karenia mikimotoi) showed increased Chl-a, while the other (P. donghaiense, P. micans, Alexandrium tamarense, Akashiwo sanguinea, Heterosigma akashiwo) showed decreased Chl-a content. The MPs-induced growth inhibition was negatively correlated with cell size in the latter group. SEM images further indicated that MPs-induced malformation in the smaller cells (e.g., P. donghaiense and K. mikimotoi) was more severe than the bigger cells (e.g., A. sanguinea and P. micans), probably due to a relatively higher ratio of the cell surface to cell volume in the former. These results implicate that the effect of MPs on marine flagellated microalgae was related to the cell size among most species but not cell wall. Thus plastic pollution may have size-dependent effects on phytoplankton in future scenarios.


Assuntos
Microalgas , Poluentes Químicos da Água , Parede Celular/química , Dinoflagellida , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 342: 123127, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072023

RESUMO

Micro- and nanoplastics (MNPs) have been found to occur intensively in aquatic environments, along with other conventional pollutants (Po) such as heavy metals, pesticides, pharmaceuticals, etc. However, our understanding of how MNPs and Po interact on aquatic primary producers is fragmented. We performed a quantitative meta-analysis based on 933 published experimental assessments from 44 studies to examine the coupled effects of MNPs and Po on microalgae. Although the results based on interaction type frequency (the proportion of each interaction type in all results) revealed dominantly additive interactions (56%) for overall physiological performance, an overall antagonistic effect was observed based on the mean interaction effect sizes. A higher proportion of antagonistic interaction type frequency was found in marine species compared to fresh species. The antagonistic effects were particularly significant for growth, oxidative responses, and photosynthesis, which could be attributed to the adsorption effect of MNPs on Po and thus the decreasing concentrations of pollutants in the medium. Larger-sized, negatively charged or uncharged and aged MNPs had higher proportions of antagonistic effects compared to smaller-sized, positively charged and virgin MNPs, due to their stronger adsorption capacity to Po. This study provides a comprehensive insight into the interactive effects of MNPs and Po on microalgae.


Assuntos
Microalgas , Microplásticos , Fotossíntese , Poluentes Químicos da Água/toxicidade
3.
Environ Pollut ; 307: 119515, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609842

RESUMO

Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L-1) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRmax, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRmax, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L-1) and high MP (10 mg L-1) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.


Assuntos
Dinoflagellida , Microalgas , Clorofila A , Proliferação Nociva de Algas , Microplásticos , Plásticos/farmacologia , Espécies Reativas de Oxigênio , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA