Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(2): 276-287, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37772456

RESUMO

In pursuit of a suitable scaffold material for cardiac valve tissue engineering applications, an acellular, electrospun, biodegradable polyester carbonate urethane urea (PECUU) scaffold was evaluated as a pulmonary valve leaflet replacement in vivo. In sheep (n = 8), a single pulmonary valve leaflet was replaced with a PECUU leaflet and followed for 1, 6, and 12 weeks. Implanted leaflet function was assessed in vivo by echocardiography. Explanted samples were studied for gross pathology, microscopic changes in the extracellular matrix, host cellular re-population, and immune responses, and for biomechanical properties. PECUU leaflets showed normal leaflet motion at implant, but decreased leaflet motion and dimensions at 6 weeks. The leaflets accumulated α-SMA and CD45 positive cells, with surfaces covered with endothelial cells (CD31+). New collagen formation occurred (Picrosirius Red). Accumulated tissue thickness correlated with the decrease in leaflet motion. The PECUU scaffolds had histologic evidence of scaffold degradation and an accumulation of pro-inflammatory/M1 and anti-inflammatory/M2 macrophages over time in vivo. The extent of inflammatory cell accumulation correlated with tissue formation and polymer degradation but was also associated with leaflet thickening and decreased leaflet motion. Future studies should explore pre-implant seeding of polymer scaffolds, more advanced polymer fabrication methods able to more closely approximate native tissue structure and function, and other techniques to control and balance the degradation of biomaterials and new tissue formation by modulation of the host immune response.


Assuntos
Próteses Valvulares Cardíacas , Valva Pulmonar , Animais , Ovinos , Células Endoteliais , Alicerces Teciduais/química , Materiais Biocompatíveis , Polímeros , Poliésteres , Engenharia Tecidual/métodos
2.
Sci Transl Med ; 9(373)2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100834

RESUMO

There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heart muscle. We present a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Coração/fisiologia , Robótica , Animais , Feminino , Testes de Função Cardíaca , Humanos , Inflamação , Movimento (Física) , Ratos , Ratos Sprague-Dawley , Silicones/química , Suínos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA