Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33729124

RESUMO

The 2C protein of foot-and-mouth disease virus (FMDV) is reported to play a critical role in the virus replication complex and modulating the host's immune response. However, the underlying molecular intricacies of subversion of cellular machinery remains poorly understood, thus emphasizing the need to study 2C-host interactions. In this study, we identified the host proteins interacting with the 2C using yeast-two hybrid (Y2H) approach, which is one of the most recognized, high-throughput tools to study protein-protein interactions. The FMDV-2C bait was characterized for auto-activation, toxicity, and expression and was found to be suitable for mating with cDNA library. On preliminary screening a total of 32 interacting host proteins were identified which were reduced to 22 on subsequent confirmation with alternative yeast based assays. Amongst these, NMI/2C interaction has been reported earlier by Wang et al. (2012) and remaining 21 are novel interactions. The Reactome analysis has revealed the role of the identified host proteins in cellular pathways exploited by 2C during FMDV replication. We also confirmed interaction of MARCH7, an E3 ubiquitin ligase with 2C using mammalian two-hybrid system and co-immunoprecipitation. This study leads to the identification of novel 2C interacting host proteins which enhance our understanding of 2C-host interface and may provide checkpoints for development of potential therapeutics against FMDV.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Bovinos , Linhagem Celular , Vírus da Febre Aftosa/isolamento & purificação , Humanos , Plasmídeos/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
2.
Arch Virol ; 160(7): 1751-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26008211

RESUMO

Foot-and-mouth disease virus (FMDV) serotype Asia1 was first reported in India in 1951, where three major genetic lineages (B, C and D) of this serotype have been described until now. In this study, the capsid protein coding region of serotype Asia1 viruses (n = 99) from India were analyzed, giving importance to the viruses circulating since 2007. All of the isolates (n = 50) recovered during 2007-2013 were found to group within the re-emerging cluster of lineage C (designated as sublineage C(R)). The evolutionary rate of sublineage C(R) was estimated to be slightly higher than that of the serotype as a whole, and the time of the most recent common ancestor for this cluster was estimated to be approximately 2001. In comparison to the older isolates of lineage C (1993-2001), the re-emerging viruses showed variation at eight amino acid positions, including substitutions at the antigenically critical residues VP279 and VP2131. However, no direct correlation was found between sequence variations and antigenic relationships. The number of codons under positive selection and the nature of the selection pressure varied widely among the structural proteins, implying a heterogeneous pattern of evolution in serotype Asia1. While episodic diversifying selection appears to play a major role in shaping the evolution of VP1 and VP3, selection pressure acting on codons of VP2 is largely pervasive. Further, episodic positive selection appears to be responsible for the early diversification of lineage C. Recombination events identified in the structural protein coding region indicates its probable role in adaptive evolution of serotype Asia1 viruses.


Assuntos
Proteínas do Capsídeo/genética , Doenças dos Bovinos/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/virologia , Variação Genética , Sequência de Aminoácidos , Animais , Ásia/epidemiologia , Proteínas do Capsídeo/química , Bovinos , Doenças dos Bovinos/epidemiologia , Evolução Molecular , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/classificação , Índia/epidemiologia , Fases de Leitura Aberta , Filogenia , Seleção Genética , Alinhamento de Sequência , Sorogrupo
3.
Virus Genes ; 51(2): 225-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26303897

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious, economically important disease of transboundary importance. Regular vaccination with chemically inactivated FMD vaccine is the major means of controlling the disease in endemic countries like India. However, the selection of appropriate candidate vaccine strain and its adaptation in cell culture to yield high titer of virus is a cumbersome process. An attractive approach to circumvent this tedious process is to replace the capsid coding sequence of an infectious full-genome length cDNA clone of a good vaccine strain with those of appropriate field strain, to produce custom-made chimeric FMD virus (FMDV). Nevertheless, the construction of chimeric virus can be difficult if the necessary endonuclease restriction sites are unavailable or unsuitable for swapping of the capsid sequence. Here we described an efficient method based on megaprimer-mediated capsid swapping for the construction of chimeric FMDV cDNA clones. Using FMDV vaccine strain A IND 40/2000 infectious clone (pA(40/2000)) as a donor plasmid, we exchanged the capsid sequence of pA(40/2000) with that of the viruses belonging to serotypes O (n = 5), A (n = 2), and Asia 1 (n = 2), and subsequently generated infectious FMDV from their respective chimeric cDNA clones. The chimeric viruses exhibited comparable infection kinetics, plaque phenotypes, antigenic profiles, and virion stability to the parental viruses. The results from this study suggest that megaprimer-based reverse genetics technology is useful for engineering chimeric vaccine strains for use in the control and prevention of FMD in endemic countries.


Assuntos
Proteínas do Capsídeo/genética , Vírus da Febre Aftosa/genética , Biologia Molecular/métodos , Recombinação Genética , Virologia/métodos , Primers do DNA , Viabilidade Microbiana , Plasmídeos
4.
Biologicals ; 43(1): 47-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25458472

RESUMO

Foot-and-mouth disease (FMD) is a highly infectious disease of transboundary importance. Routine biannual vaccination along with surveillance activities is seen as the principal to control FMD in India. Non-structural protein (NSP) based immunoassays are the test of choice for the differentiation between infected and vaccinated population. In this study, 3D protein of FMD virus was expressed in Escherichia coli and an indirect ELISA (I-ELISA) was developed to detect 3D-antibodies in the infected bovines. 3D I-ELISA demonstrated comparable diagnostic sensitivity (97.6%) but lower specificity (80.8%) as compared to the in-house r3AB3 I-ELISA. However, the specificity values varied significantly for naïve and vaccinated samples and were observed to be 98.42% and 76.93%, respectively. A moderate degree of concordance (88.5%) was observed between the overall results of two ELISAs. 3D I-ELISA displayed a considerably lower specificity in uninfected vaccinated samples, thereby suggesting against its application for serosurveillance in intensively vaccinated population. However by virtue of its high diagnostic sensitivity and longer duration of persistence of 3D-antibody post-infection, 3D I-ELISA could be adopted for seroepidemiological investigations in regions not practicing vaccination and could be extended to susceptible species which are generally not covered by vaccination.


Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Proteínas não Estruturais Virais/imunologia , Animais , Eletroforese em Gel de Poliacrilamida , Febre Aftosa/virologia , Vírus da Febre Aftosa/isolamento & purificação
5.
Biologicals ; 43(3): 202-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787111

RESUMO

The cDNA libraries are indispensable and critical tools for performing protein-protein interaction studies. In this study, a high quality yeast two-hybrid cDNA library from the LFBK cell line was constructed and characterized. LFBK cell line was originally derived from the swine kidney cells and is highly susceptible to foot-and-mouth disease virus (FMDV) infection. The total RNA was extracted from the LFBK cells and the switching mechanism at the 5' end of RNA template (SMART) technique was employed for the cDNA synthesis. Subsequently, double stranded cDNA was amplified by long-distance PCR, purified and co-transformed with pGADT7-rec vector in yeast strain Y187. The quality parameters of the constructed library were evaluated to qualify the constructed library. Nucleotide sequencing of the randomly selected clones from the library confirmed the swine genotype of LFBK cell line. The LFBK cDNA library was mated with the 2C protein of FMDV in yeast two-hybrid (YTH) system and several putative interaction partners were identified in the preliminary screening. The LFBK library was observed to be of high quality and could potentially be applied to protein interaction studies between FMDV and the host cells using YTH system.


Assuntos
Vírus da Febre Aftosa/metabolismo , Febre Aftosa , Biblioteca Gênica , Saccharomyces cerevisiae/genética , Suínos/genética , Técnicas do Sistema de Duplo-Híbrido , Animais , Linhagem Celular , Febre Aftosa/genética , Febre Aftosa/metabolismo
6.
Biologicals ; 43(3): 158-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25911541

RESUMO

Three of the seven serotypes of foot-and-mouth disease (FMD) virus are prevailing in India. A massive vaccination campaign is on to control and eradicate the disease from the country. However, FMD vaccines provide short term immunity, hence regular assessment of antibody level in the vaccinated herds is indispensible for the success of the control programme. The antibodies are quantitatively estimated, either by virus neutralization test or by end-point dilution liquid-phase-blocking ELISA (LPBE). Millions of cattle and buffalo in the country are now systematically vaccinated, and thousands of serum samples are routinely screened in the country for estimation of herd immunity against FMDV serotypes O, A and Asia1. Testing such a large number of serum samples within limited a period of time by the conventional end point dilution method of LPBE requires lots of man power, and biological reagents. A more economical high throughput single dilution LPBE (SdLPBE) assay was optimized and validated for quantitative estimation of antibody levels against the three FMD virus serotypes. The assay was thoroughly validated against LPBE method before adopting it for country-wide use. The biological reagents used in the assay were prepared in thermo-stable form to enable transportation to the field level FMD diagnostic laboratories.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/sangue , Febre Aftosa/sangue , Animais , Anticorpos Antivirais/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/imunologia , Humanos , Índia , Masculino , Vacinas Virais/imunologia , Vacinas Virais/farmacologia
7.
Biologicals ; 42(6): 339-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25439091

RESUMO

Differentiation of Foot-and-Mouth Disease infected from vaccinated animals is essential for effective implementation of vaccination based control programme. Detection of antibodies against 3ABC non-structural protein of FMD virus by immunodiagnostic assays provides reliable indication of FMD infection. Sero-monitoring of FMD in the large country like India is a big task where thousands of serum samples are annually screened. Currently, monoclonal or polyclonal antibodies are widely used in these immunodiagnostic assays. Considering the large population of livestock in the country, an economical and replenishable alternative of these antibodies was required. In this study, specific short chain variable fragment (scFv) antibody against 3B region of 3ABC poly-protein was developed. High level of scFv expression in Escherichia coli system was obtained by careful optimization in four different strains. Two formats of enzyme immunoassays (sandwich and competitive ELISAs) were optimized using scFv with objective to differentiate FMD infected among the vaccinated population. The assays were statistically validated by testing 2150 serum samples. Diagnostic sensitivity/specificity of sandwich and competitive ELISAs were determined by ROC method as 92.2%/95.5% and 89.5%/93.5%, respectively. This study demonstrated that scFv is a suitable alternate for immunodiagnosis of FMD on large scale.


Assuntos
Escherichia coli/metabolismo , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Anticorpos de Cadeia Única/química , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/sangue , Búfalos , Bovinos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Hibridomas/metabolismo , Técnicas Imunoenzimáticas , Camundongos , Pressão Osmótica , Curva ROC , Proteínas Recombinantes/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Testes Sorológicos , Vacinas Virais
8.
Braz J Microbiol ; 52(4): 2447-2454, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478107

RESUMO

The foot-and-mouth disease virus (FMDV) causes a highly infectious disease of all cloven-footed animals. The RNA genome of the virus continuously evolves, leading to the generation of new strains; this necessitates the selection of new vaccine strains to ensure complete protection. Infection with one FMDV serotype does not provide cross-protection against the other FMDV serotypes. Many of the recovered animals may become carriers of the FMDV, but they still remain susceptible to the other serotypes. Coinfection with multiple FMDV serotypes has been reported and studied to understand the virus evolution. Isolation and characterization of all the involved serotypes in the mixed infection case is essential to understand the molecular evolution of the virus. In this study, two cases of coinfection were studied by selective isolation of each of the FMDV serotypes under the cross-serotype-specific immune pressure. It was estimated that the virus present in a minimum of 10-0.92 TCID50 could be isolated from the mixed population containing other serotypes in infective doses of 100.25 TCID50 or less. All involved serotypes present in the mixed infection cases were isolated, without any cross-contamination. Virus characterization revealed that genotype 2 was of serotype A virus from a sample collected in 1995, which was last reported in 1986, indicating a possible subdued prevalence of the genetic group even after vanishing from the field.


Assuntos
Coinfecção , Vírus da Febre Aftosa , Febre Aftosa , Animais , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , Filogenia , Sorogrupo
9.
Vaccines (Basel) ; 7(3)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426368

RESUMO

A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.

10.
World J Virol ; 4(3): 295-302, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26279990

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of livestock, primarily affecting cattle, buffalo and pigs. FMD virus serotypes O, A and Asia1 are prevalent in India and systematic efforts are on to control and eventually eradicate the disease from the country. FMD epidemiology is complex due to factors like co-circulation, extinction, emergence and re-emergence of genotypes/lineages within the three serotypes, animal movement, diverse farm practices and large number of susceptible livestock in the country. Systematic vaccination, prompt diagnosis, strict biosecurity measures, and regular monitoring of vaccinal immunity and surveillance of virus circulation are indispensible features for the effective implementation of the control measures. Availability of suitable companion diagnostic tests is very important in this endeavour. In this review, the diagnostic assays developed and validated in India and their contribution in FMD control programme is presented.

11.
J Virol Methods ; 207: 22-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996132

RESUMO

Foot-and-mouth disease is a highly infectious and contagious disease of livestock animals with transboundary and economical importance. Animals in the endemic settings are regularly vaccinated in addition to intensive surveillance for control of the disease. Under intensive vaccination, detection of infected animals among the vaccinated population is essential to monitor the infection and to track down the virus movement. Sero-surveillance and retrospective disease diagnosis is performed primarily by detecting antibodies against non-structural proteins (NSPs) of FMD virus which are usually absent in the inactivated vaccine formulations. The study was conducted with an objective to compare simultaneously performance of six NSP ELISAs in detecting infected animals in the areas covered under intensive vaccination, and to assess their fit-for-purpose attribute for sero-surveillance of FMD in India. A panel of bovine serum samples consisting of samples collected from infected with FMDV, vaccinated and naive animals were constituted. In addition, samples collected at random from areas having varied FMD situation and vaccination coverage were tested simultaneously by the six NSP ELISAs to compare their performances. The four indigenous assays showed varying degrees of correlation with the two commercial kits. The study validated that, in all the groups of samples, the indigenous assays were equally sensitive and specific as the two commercial kits. Among all the six assays, PrioCheck and in-house 3ABC I-ELISAs showed maximum sensitivity for detection of infected animals, whereas 3AB3 I-ELISA and 3ABC C-ELISA showed maximum specificity. The study concluded that the in-house available assays are equally capable as the commercially available kits for differentiation of infected animals under intensive vaccination and identifies the 3AB3 I-ELISA with optimum sensitivity and specificity for the purpose of sero-surveillance in India.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/diagnóstico , Monitoramento Epidemiológico , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Proteínas não Estruturais Virais , Animais , Antígenos Virais , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Índia , Sensibilidade e Especificidade , Testes Sorológicos/métodos
12.
J Virol Methods ; 193(2): 405-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23850716

RESUMO

Foot-and-mouth disease (FMD) is a transboundary animal disease caused by foot-and-mouth disease virus. In India, systematic preventive vaccination using inactivated trivalent (O, A and Asia 1) vaccine is the strategy being adopted to control FMD. The use of non-structural protein (NSP)-contaminated inactivated vaccine raises concerns over differentiation of infected and vaccinated animals (DIVA) by NSP based immunoassays. However, 2C being a membrane associated protein usually remain absent in vaccine formulations and thus, anti-2C response is one of the most reliable indicator of the FMDV infection. In this study, 34 amino acids from N-terminus of 2C protein were removed to eliminate membrane-binding amphipathic helicase activity for the expression of recombinant protein in soluble form. Truncated 2C (2Ct) was utilized for development of an indirect ELISA (I-ELISA) for bovine and the developed 2Ct I-ELISA was validated using a panel constituting of serum of naïve, vaccinated and infected animals. The assay was compared with the in-house r3AB3 I-ELISA and the overall concordance was 85.31%. The diagnostic sensitivity and specificity of the 2Ct I-ELISA were 92.9% and 94.0%, respectively. The apparent prevalence of anti-2C antibodies for random bovine samples tested by the developed assay was 23.7%. The developed ELISA will help in augmenting the sensitivity of detection if used in combination with r3AB3 I-ELISA for sero-surveillance.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais , Doenças dos Bovinos/diagnóstico , Cisteína Endopeptidases , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Testes Imunológicos/métodos , Proteínas Virais , Proteases Virais 3C , Animais , Antígenos Virais/genética , Bovinos , Cisteína Endopeptidases/genética , Ensaio de Imunoadsorção Enzimática/métodos , Índia , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Medicina Veterinária/métodos , Proteínas Virais/genética
13.
J Virol Methods ; 185(1): 52-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22683829

RESUMO

Differentiation of infected from vaccinated animals (DIVA) is essential for effective control of foot-and-mouth disease (FMD) by vaccination. The antibody response against FMD viral non-structural proteins (NSPs) has been used widely for this purpose. Among all the NSPs, the 3ABC polyprotein has been recognized as the most appropriate indicator for DIVA. In this study, mutated full-length 3ABC polyprotein was expressed in a prokaryotic system and monoclonal antibody against the recombinant protein was developed. A competitive ELISA (C-ELISA) for DIVA was standardized for different species of livestock animals using recombinant 3ABC and monoclonal antibodies. The diagnostic sensitivity and specificity of the assay were estimated by testing a panel of known serum samples consisting of sera from naive, vaccinated and infected animals as 86.9% with 66.4-97.2 (95%) confidence interval and 97% with 89.6-99.6 (95%) confidence interval respectively at 40% inhibition cut-off. The assay was validated further by testing sera from different livestock species collected at random from different parts of the country. The assay will provide a common method for testing sera from different species of livestock and wild animals. The C-ELISA is a sensitive and specific DIVA assay for FMD and can be used as a method for FMD control programme with vaccination.


Assuntos
Anticorpos Monoclonais , Febre Aftosa/diagnóstico , Medicina Veterinária/métodos , Proteínas não Estruturais Virais , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Testes Imunológicos/métodos , Testes Imunológicos/normas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Medicina Veterinária/normas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA