Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dent ; 145: 105015, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38657726

RESUMO

OBJECTIVES: To assess and compare the cell viability and ion release profiles of two conventional glass ionomer cements (GICs), Fuji IX and Ketac Molar EasyMix, modified with TiO2 and Mg-doped-HAp nanoparticles (NPs). METHODS: TiO2 NPs, synthesized via a sol-gel method, and Mg-doped hydroxyapatite, synthesized via a hydrothermal process, were incorporated into GICs at a concentration of 5 wt.%. The biocompatibility of prepared materials was assessed by evaluating their effects on the viability of dental pulp stem cells (DPSCs), together with monitoring ion release profiles. Statistical analysis was performed using One-way analysis of variance, with significance level p < 0.05. RESULTS: The addition of NPs did not significantly affect the biocompatibility of GICs, as evidenced by comparable decreased levels in cell viability to their original formulations. Distinct variations in cell viability were observed among Fuji IX and Ketac Molar, including their respective modifications. FUJI IX and its modification with TiO2 exhibited moderate decrease in cell viability, while other groups exhibited severe negative effects. While slight differences in ion release profiles were observed among the groups, significant variations compared to original cements were not achieved. Fluoride release exhibited an initial "burst release" within the initial 24 h in all samples, stabilizing over subsequent days. CONCLUSIONS: The addition of NPs did not compromise biocompatibility, nor anticariogenic potential of tested GICs. However, observed differences among FUJI IX and Ketac Molar, including their respective modifications, as well as induced low viability of DPSC by all tested groups, suggest the need for careful consideration of cement composition in their biological assessments. CLINICAL SIGNIFICANCE: The findings contribute to understanding the complex interaction between NPs and GIC matrices. However, the results should be interpreted recognizing the inherent limitations associated with in vitro studies. Further research avenues could explore long-term effects, in vivo performance, and potential clinical applications.


Assuntos
Sobrevivência Celular , Polpa Dentária , Durapatita , Fluoretos , Cimentos de Ionômeros de Vidro , Magnésio , Teste de Materiais , Nanopartículas , Titânio , Titânio/química , Cimentos de Ionômeros de Vidro/química , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Nanopartículas/química , Fluoretos/química , Magnésio/química , Células-Tronco/efeitos dos fármacos , Materiais Biocompatíveis/química , Íons , Células Cultivadas
2.
Environ Sci Pollut Res Int ; 23(4): 3239-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490893

RESUMO

Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.


Assuntos
Sedimentos Geológicos/química , Plantas/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Adsorção , Disponibilidade Biológica , Germinação/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/química , Polímeros , Poliestirenos , Polivinil
3.
J Hazard Mater ; 283: 60-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25261761

RESUMO

This work compares the biodegradation potential of four polycyclic aromatic hydrocarbons (PAH) (phenanthrene, pyrene, chrysene and benzo(a)pyrene, chosen as representatives of the 3, 4 and 5 ring PAHs) with their desorption from sediment by XAD4 resin and methyl-ß-cyclodextrin (MCD). The biodegradation study was conducted under various conditions (biostimulation, bioaugmentation and their combination). The results show that total PAH removal in all treatments except biostimulation gave similar results, whereby the total amount of PAHs was decreased by about 30-35%. The desorption experiment showed that XAD4 desorbed a greater fraction of phenanthrene (77% versus 52%), and benzo(a)pyrene (44% versus 25%) than MCD. The results for four ring PAHs were similar for both desorption agents (about 30%). Comparing the maximum biodegraded amount of each PAH with the rapidly desorbed XAD4 and MCD fraction, XAD4 was found to correlate better with biodegradation for the high molecular PAHs (pyrene, chrysene, benzo(a)pyrene), although it overestimated the availability of phenanthrene. In contrast, MCD showed better correlation with the biodegradation of low molecular weight PAHs.


Assuntos
Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poliestirenos/química , Polivinil/química , beta-Ciclodextrinas/química , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Modelos Químicos , Microbiologia da Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA