Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomacromolecules ; 22(4): 1484-1493, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33663210

RESUMO

Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.


Assuntos
Poliésteres , RNA , Hidroxiácidos , Polímeros , Proteínas
2.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133454

RESUMO

Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Assuntos
Materiais Biomiméticos/química , Enzimas/metabolismo , Poliésteres/química , Catálise , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular
3.
Orig Life Evol Biosph ; 45(1-2): 123-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25990933

RESUMO

Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.


Assuntos
Ácido Cítrico/química , Evolução Química , Glicerol/química , Poliésteres/química , Cátions Bivalentes/química , Estrutura Molecular , Origem da Vida , Polimerização , Temperatura
4.
J Chem Phys ; 130(13): 134503, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19355747

RESUMO

Hydrogen cyanide polymerizes readily under a variety of conditions and significant prebiotic roles have been suggested for these polymers due to the abundance of HCN in universe. However, the structures of HCN polymers have been more speculative than grounded in experimental data. Here we show that (13)C and (15)N solid state NMR spectra of polymers formed in neat HCN are inconsistent with the previously proposed structures and suggest instead that the polymers are formed by simple monomer addition, first in head-to-tail fashion to form linear, conjugated chains, and then laterally to form saturated two-dimensional networks. This interpretation of the NMR spectra finds support in other information about the polymerization of neat HCN, including the presence of free radicals. As expected from the literature, formation of the HCN tetramer, diaminomaleonitrile, is also observed, but only when the reaction is catalyzed exclusively by base and then in crystalline form.


Assuntos
Radicais Livres/química , Cianeto de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Polímeros/química , Termodinâmica
5.
J Chem Phys ; 130(13): 134504, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19355748

RESUMO

The HCN tetramer, diaminomaleonitrile, crystallizes in sheets with amine and nitrile groups of neighboring molecules in close proximity. This suggests the possibility of relatively facile acid-base addition to form a protopeptide polymer. We find that moderate heating under argon indeed results in an unmistakable reaction, with the abrupt transformation of pale crystallites to shrunken dark particles that become electrically conductive upon doping with iodine. Since nearly a quarter of the mass is lost in the process and the released gas condenses, polymerizes, and reacts with aqueous AgNO(3) like HCN, it seems likely that the dark solid is a polymer of HCN trimer. (13)C and (15)N solid state NMR spectra show the formation of new N-C bonds, and entirely different functional groups from those observed in polymers formed by liquid HCN. These include three different types of nitrogen functionalities and an absence of saturated carbon or nitrile. The observed chemical shifts, optical properties, and electrical conductivity are consistent with polymers of HCN trimer that have undergone cyclization to form poly-[aminoimidazole].


Assuntos
Cristalização , Cianeto de Hidrogênio/química , Modelos Químicos , Nitrilas/química , Polímeros/química , Hidrólise , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
6.
J Phys Chem B ; 115(19): 5741-5, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21456563

RESUMO

Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry, and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective (13)C substitution, (1)H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose, and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogeneous network-type polymer in which sugar molecules cross-link the heterocycles.


Assuntos
Substâncias Húmicas/análise , Polímeros/química , Aminas/química , Catálise , Desoxirribose/química , Frutose/química , Furanos/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Teoria Quântica , Ribose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA