Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 70: 99-121, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31174457

RESUMO

Organic devices are attracting considerable attention as prostheses for the recovery of retinal light sensitivity lost to retinal degenerative disease. The biotic/abiotic interface created when light-sensitive polymers and living tissues are placed in contact allows excitation of a response in blind laboratory rats exposed to visual stimuli. Although polymer retinal prostheses have proved to be efficient, their working mechanism is far from being fully understood. In this review article, we discuss the results of the studies conducted on these kinds of polymer devices and compare them with the data found in the literature for inorganic retinal prostheses, where the working mechanisms are better comprehended. This comparison, which tries to set some reference values and figures of merit, is intended for use as a starting point to determine the direction for further investigation.


Assuntos
Polímeros/química , Tiofenos/química , Próteses Visuais/química , Materiais Biocompatíveis/química , Células HEK293 , Humanos , Fotoquímica , Degeneração Retiniana/terapia
2.
Nat Nanotechnol ; 15(8): 698-708, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601447

RESUMO

Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.


Assuntos
Pontos Quânticos , Retina/efeitos dos fármacos , Retinose Pigmentar/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Injeções Intraoculares , Masculino , Estimulação Luminosa , Polímeros/administração & dosagem , Polímeros/farmacologia , Pontos Quânticos/administração & dosagem , Pontos Quânticos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo , Próteses Visuais
3.
Nucleic Acids Res ; 31(16): e98, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12907750

RESUMO

The study of pathogenic mitochondrial DNA mutations has, in most cases, relied on the production of transmitochondrial cybrids. Although the procedure to produce such cybrids is well established, it is laborious and cumbersome. Moreover, the mechanical enucleation procedure is inefficient and different techniques have to be used depending on the adherence properties of the cell. To circumvent these difficulties, we developed a chemical enucleation method that can have wide applicability for the production of transmitochondrial cybrids. The method is based on the use of actinomycin D to render the nuclear genome transcription/replication inactive and unable to recover after treatment. Such treated cells are fused to cells devoid of mitochondrial DNA and selected for the presence of a functional oxidative phosphorylation system. Our results showed that 95% of the clones recovered by this procedure are true transmitochondrial cybrids. This method greatly facilitates the production of transmitochondrial cybrids, thereby increasing the number of mtDNA mutations and the recipient cell types that can be studied by this system.


Assuntos
Núcleo Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Dactinomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Animais , Fusão Celular/métodos , Linhagem Celular , Núcleo Celular/fisiologia , Citoplasma/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Transferência de Genes , Gorilla gorilla , Humanos , Células Híbridas/citologia , Células Híbridas/efeitos dos fármacos , Células Híbridas/metabolismo , Pan troglodytes , Polietilenoglicóis/farmacologia , Reprodutibilidade dos Testes , Células Tumorais Cultivadas
4.
J Neurochem ; 97(6): 1659-75, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16805775

RESUMO

In the past decade, the genetic causes underlying familial forms of many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich ataxia, hereditary spastic paraplegia, dominant optic atrophy, Charcot-Marie-Tooth type 2A, neuropathy ataxia and retinitis pigmentosa, and Leber's hereditary optic atrophy have been elucidated. However, the common pathogenic mechanisms of neuronal death are still largely unknown. Recently, mitochondrial dysfunction has emerged as a potential 'lowest common denominator' linking these disorders. In this review, we discuss the body of evidence supporting the role of mitochondria in the pathogenesis of hereditary neurodegenerative diseases. We summarize the principal features of genetic diseases caused by abnormalities of mitochondrial proteins encoded by the mitochondrial or the nuclear genomes. We then address genetic diseases where mutant proteins are localized in multiple cell compartments, including mitochondria and where mitochondrial defects are likely to be directly caused by the mutant proteins. Finally, we describe examples of neurodegenerative disorders where mitochondrial dysfunction may be 'secondary' and probably concomitant with degenerative events in other cell organelles, but may still play an important role in the neuronal decay. Understanding the contribution of mitochondrial dysfunction to neurodegeneration and its pathophysiological basis will significantly impact our ability to develop more effective therapies for neurodegenerative diseases.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/fisiopatologia , Mitocôndrias/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA