Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Curr Osteoporos Rep ; 20(1): 90-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35129809

RESUMO

PURPOSE OF THE REVIEW: Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS: Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400µm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.


Assuntos
Cárie Dentária , Doenças Dentárias , Fluoretos , Humanos , Minerais
2.
Curr Osteoporos Rep ; 20(1): 106-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35156182

RESUMO

PURPOSE OF REVIEW: Compare noninfectious (part I) to infectious (part II) demineralization of bones and teeth. Evaluate similarities and differences in the expression of hard tissue degradation for the two most common chronic demineralization diseases: osteoporosis and dental caries. RECENT FINDINGS: The physiology of demineralization is similar for the sterile skeleton compared to the septic dentition. Superimposing the pathologic variable of infection reveals a unique pathophysiology for dental caries. Mineralized tissues are compromised by microdamage, demineralization, and infection. Osseous tissues remodel (turnover) to maintain structural integrity, but the heavily loaded dentition does not turnover so it is ultimately at risk of collapse. A carious tooth is a potential vector for periapical infection that may be life-threatening. Insipient caries is initiated as a subsurface decalcification in enamel that is not detectable until a depth of ~400µm when it becomes visible as a white spot. Reliable detection and remineralization of invisible caries would advance cost-effective wellness worldwide.


Assuntos
Cárie Dentária , Suscetibilidade à Cárie Dentária , Esmalte Dentário , Humanos , Remineralização Dentária
3.
Am J Orthod Dentofacial Orthop ; 158(4): 505-517.e6, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828608

RESUMO

INTRODUCTION: The purpose of this study was to quantify and qualify the 3-dimensional (3D) condylar changes using mandibular 3D regional superimposition techniques in adolescent patients with Class II Division 1 malocclusions treated with either a 2-phase or single-phase approach. METHODS: Twenty patients with Herbst appliances who met the inclusion criteria and had cone-beam computed tomography (CBCT) images taken before, 8 weeks after Herbst removal, and after the completion of multibracket appliance treatment constituted the Herbst group. They were compared with 11 subjects with Class II malocclusion who were treated with elastics and multibracket appliances and who had CBCT images taken before and after treatment. Three-dimensional models generated from the CBCT images were registered on the mandible using 3D voxel-based superimposition techniques and analyzed using semitransparent overlays and point-to-point measurements. RESULTS: The magnitude of lateral condylar growth during the orthodontic phase (T2-T3) was greater than that during the orthopedic phase (T1-T2) for all condylar fiducials with the exception of the superior condyle (P <0.05). Conversely, posterior condylar growth was greater during the orthopedic phase than the subsequent orthodontic phase for all condylar fiducials (P <0.05). The magnitude of vertical condylar development was similar during both the orthopedic (T1-T2) and orthodontic phases (T2-T3) across all condylar fiducials (P <0.05). Posterior condylar growth during the orthodontic phase (T2-T3) of the 2-phase approach decreased for all condylar fiducials with the exception of the posterior condylar fiducial (P <0.05) when compared with the single-phase approach. CONCLUSIONS: Two-phase treatment using a Herbst appliance accelerates condylar growth when compared with a single-phase regime with Class II elastics. Whereas the posterior condylar growth manifested primarily during the orthopedic phase, the vertical condylar gains occurred in equal magnitude throughout both phases of the 2-phase treatment regime.


Assuntos
Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/terapia , Aparelhos Ortodônticos Funcionais , Adolescente , Cefalometria , Tomografia Computadorizada de Feixe Cônico , Humanos , Mandíbula
4.
Biochem Biophys Res Commun ; 495(2): 1896-1900, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29229389

RESUMO

The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.


Assuntos
Esmalte Dentário/química , Esmalte Dentário/ultraestrutura , Durapatita/química , Calicreínas/química , Calicreínas/ultraestrutura , Sítios de Ligação , Ativação Enzimática , Estabilidade Enzimática , Ligação Proteica , Especificidade por Substrato
5.
Eur J Oral Sci ; 119 Suppl 1: 112-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243236

RESUMO

It is widely accepted that healthy enamel formation depends on a steady supply of calcium, yet only fragmentary understanding exists about the mechanisms underlying transepithelial calcium transport. Several lines of evidence indicate that calcium principally follows a transcellular route, which classically is thought to be facilitated by cytosolic calcium-binding proteins termed calbindins. In enamel cells, however, this 'calcium-ferry' dogma appears to fail as we previously found that the major calbindin in murine enamel cells (calbindin-28 kDa) was down-regulated during the peak period of calcium transport and enamel was formed normally in mice lacking calbindin-28 kDa. It remains to be clarified whether the two other known calbindins could function as calcium ferries instead. This study used biochemical and proteomic approaches to obtain definitive identification and quantification of the 30-kDa calbindin (calretinin) and calbindin-9 kDa (S100-G) in enamel epithelium from rat. By establishing that both of these calbindins contribute insufficient calcium capacities in molars and incisors, our results render the calcium-ferry dogma untenable. Of significance to enamel defects and dental bioengineering, these findings support other evidence for an alternative organelle-based mode of calcium transport (calcium transcytosis) and also implicate S100-G/calbindin-9 kDa, but not calretinin, in a calcium-signaling role during enamel maturation.


Assuntos
Amelogênese/fisiologia , Cálcio/metabolismo , Esmalte Dentário/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Transcitose/fisiologia , Ameloblastos/metabolismo , Animais , Calbindina 2 , Calbindinas , Sinalização do Cálcio , Esmalte Dentário/citologia , Eletroforese em Gel de Poliacrilamida , Epitélio/metabolismo , Peso Molecular , Proteômica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteína G de Ligação ao Cálcio S100/análise , Espectrometria de Massas em Tandem/métodos
6.
Front Physiol ; 12: 802833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992550

RESUMO

Popularly known as "chalky teeth", molar hypomineralisation (MH) affects over 1-in-5 children worldwide, triggering massive amounts of suffering from toothache and rapid decay. MH stems from childhood illness and so offers a medical-prevention avenue for improving oral and paediatric health. With a cross-sector translational research and education network (The D3 Group; thed3group.org) now highlighting this global health opportunity, aetiological understanding is urgently needed to enable better awareness, management and eventual prevention of MH. Causation and pathogenesis of "chalky enamel spots" (i.e., demarcated opacities, the defining pathology of MH) remain unclear despite 100 years of investigation. However, recent biochemical studies provided a pathomechanistic breakthrough by explaining several hallmarks of chalky opacities for the first time. This article outlines these findings in context of previous understanding and provides a working model for future investigations. The proposed pathomechanism, termed "mineralisation poisoning", involves localised exposure of immature enamel to serum albumin. Albumin binds to enamel-mineral crystals and blocks their growth, leading to chalky opacities with distinct borders. Being centred on extracellular fluid rather than enamel-forming cells as held by dogma, this localising pathomechanism invokes a new type of connection with childhood illness. These advances open a novel direction for research into pathogenesis and causation of MH, and offer prospects for better clinical management. Future research will require wide-ranging inputs that ideally should be coordinated through a worldwide translational network. We hope this breakthrough will ultimately lead to medical prevention of MH, prompting global health benefits including major reductions in childhood tooth decay.

7.
Front Physiol ; 11: 579015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101060

RESUMO

Molar hypomineralisation (MH) is becoming globally recognised as a significant public health problem linked to childhood tooth decay. However, with causation and pathogenesis unclear after 100 years of investigation, better pathological understanding is needed if MH is to become preventable. Our studies have implicated serum albumin in an extracellular pathomechanism for chalky enamel, opposing longheld dogma about systemic injury to enamel-forming cells. Hypothesising that chalky enamel arises through developmental exposure to serum albumin, this study used biochemical approaches to characterise demarcated opacities from 6-year molars. Addressing contradictory literature, normal enamel was found to completely lack albumin subject to removal of surface contamination. Querying surface permeability, intact opacities were found to lack salivary amylase, indicating that "enamel albumin" had become entrapped before tooth eruption. Thirdly, comparative profiling of chalky and hard-white enamel supported a dose-response relationship between albumin and clinical hardness of opacities. Moreover, albumin abundance delineated chalky enamel from white transitional enamel at opacity borders. Finally, addressing the corollary that enamel albumin had been entrapped for several years, clear signs of molecular ageing (oxidative aggregation and fragmentation) were identified. By establishing aged albumin as a biomarker for chalky enamel, these findings hold methodological, clinical, and aetiological significance. Foremost, direct inhibition of enamel-crystal growth by albumin (here termed "mineralisation poisoning") at last provides a cogent explanation for the clinical presentation of demarcated opacities. Together, these findings justify pursuit of an extracellular paradigm for the pathogenesis of MH and offer exciting new prospects for alleviating childhood tooth decay through medical prevention of MH.

8.
Front Physiol ; 11: 619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595522

RESUMO

Molar Hypomineralisation (MH) is gaining cross-sector attention as a global health problem, making deeper enquiry into its prevention a research priority. However, causation and pathogenesis of MH remain unclear despite 100 years of investigation into "chalky" dental enamel. Contradicting aetiological dogma involving disrupted enamel-forming cells (ameloblasts), our earlier biochemical analysis of chalky enamel opacities implicated extracellular serum albumin in enamel hypomineralisation. This study sought evidence that the albumin found in chalky enamel reflected causal events during enamel development rather than later association with pre-existing enamel porosity. Hypothesising that blood-derived albumin infiltrates immature enamel and directly blocks its hardening, we developed a "molecular timestamping" method that quantifies the adult and fetal isoforms of serum albumin ratiometrically. Applying this novel approach to 6-year molars, both isoforms of albumin were detectable in 6 of 8 chalky opacities examined (corresponding to 4 of 5 cases), indicating developmental acquisition during early infancy. Addressing protein survival, in vitro analysis showed that, like adult albumin, the fetal isoform (alpha-fetoprotein) bound hydroxyapatite avidly and was resistant to kallikrein-4, the pivotal protease involved in enamel hardening. These results shift primary attention from ameloblast injury and indicate instead that an extracellular mechanism involving localised exposure of immature enamel to serum albumin constitutes the crux of MH pathogenesis. Together, our pathomechanistic findings plus the biomarker approach for onset timing open a new direction for aetiological investigations into the medical prevention of MH.

9.
Methods Mol Biol ; 1537: 461-479, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924612

RESUMO

Improved understanding of dental enamel development will benefit not only dentistry but also biomedicine more generally. Rat and mouse models of enamel development are relatively well characterized and experimentally powerful. However, the diminutive size of murine teeth makes them difficult to study using standard proteomics approaches. Here, we describe gel-based proteomic methods that enable parallel quantification, identification, and functional characterization of proteins from developing rat and mouse teeth. These refined methods are applicable to other scarce samples including human enamel defects.


Assuntos
Esmalte Dentário/metabolismo , Proteoma , Proteômica , Animais , Eletroforese em Gel Bidimensional , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Ratos
10.
Front Physiol ; 8: 546, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824445

RESUMO

Developmental dental defects (DDDs, hereafter "D3s") hold significance for scientists and practitioners from both medicine and dentistry. Although, attention has classically dwelt on three other D3s (amelogenesis imperfecta, dental fluorosis, and enamel hypoplasia), dental interest has recently swung toward Molar Hypomineralisation (MH), a prevalent condition characterised by well-delineated ("demarcated") opacities in enamel. MH imposes a significant burden on global health and has potential to become medically preventable, being linked to infantile illness. Yet even in medico-dental research communities there is only narrow awareness of this childhood problem and its link to tooth decay, and of allied research opportunities. Major knowledge gaps exist at population, case and tooth levels and salient information from enamel researchers has sometimes been omitted from clinically-oriented conclusions. From our perspective, a cross-sector translational approach is required to address these complex inadequacies effectively, with the ultimate aim of prevention. Drawing on experience with a translational research network spanning Australia and New Zealand (The D3 Group; www.thed3group.org), we firstly depict MH as a silent public health problem that is generally more concerning than the three classical D3s. Second, we argue that diverse research inputs are needed to undertake a multi-faceted attack on this problem, and outline demarcated opacities as the central research target. Third, we suggest that, given past victories studying other dental conditions, enamel researchers stand to make crucial contributions to the understanding and prevention of MH. Finally, to focus geographically diverse research interests onto this nascent field, further internationalisation of The D3 Group is warranted.

11.
Methods Mol Biol ; 666: 309-25, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20717792

RESUMO

Improved understanding of dental enamel development will benefit not only dentistry but also biomedicine more generally. Rat and mouse models of enamel development are relatively well characterized and experimentally powerful. However, the diminutive size of murine teeth makes them difficult to study using standard proteomic approaches. Here we describe gel-based proteomic methods that enable parallel quantification, identification, and functional characterization of proteins from developing rat and mouse teeth. These refined methods are also likely to be applicable to other scarce samples.


Assuntos
Proteômica/métodos , Animais , Esmalte Dentário/citologia , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Eletroforese , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Epitélio/metabolismo , Camundongos , Ratos
12.
J Biol Chem ; 279(53): 55850-4, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15494408

RESUMO

Cytosolic calcium-binding proteins termed calbindins are widely regarded as a key component of the machinery used to transport calcium safely across cells. Acting as mobile buffers, calbindins are thought to ferry calcium in bulk and simultaneously protect against its potentially cytotoxic effects. Here, we contradict this dogma by showing that teeth and bones were produced normally in null mutant mice lacking calbindin(28kDa). Structural analysis of dental enamel, the development of which depends critically on active calcium transport, showed that mineralization was unaffected in calbindin(28kDa)-null mutants. An unchanged rate of calcium transport was verified by measurements of (45)Ca incorporation into developing teeth in vivo. In enamel-forming cells, the absence of calbindin(28kDa) was not compensated by other cytosolic calcium-binding proteins as detectable by (45)Ca overlay, two-dimensional gel, and equilibrium binding analyses. Despite a 33% decrease in cytosolic buffer capacity, cytotoxicity was not evident in either the null mutant enamel or its formative cells. This is the first definitive evidence that calbindins are not required for active calcium transport, either as ferries or as facilitative buffers. Moreover, in challenging the broader notion of a cytosolic route for calcium, the findings support an alternative paradigm involving passage via calcium-tolerant organelles.


Assuntos
Cálcio/química , Proteína G de Ligação ao Cálcio S100/química , Dente/embriologia , Animais , Calbindinas , Cálcio/metabolismo , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica , Proteína G de Ligação ao Cálcio S100/metabolismo , Proteína G de Ligação ao Cálcio S100/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA