RESUMO
Harmful algal blooms (HABs) occur when excess nutrients allow dinoflagellates to reproduce in large numbers. Marine animals are affected by blooms when algal toxins are ingested or inhaled. In the Gulf of Mexico, near annual blooms of Karenia brevis release a suite of compounds (brevetoxins) that cause sea turtle morbidity and mortality. The primary treatment at rehabilitation facilities for brevetoxin-exposed sea turtles is supportive care, and it has been difficult to design alternative treatment strategies without an understanding of the effects of brevetoxins in turtles in vivo. Previous studies using the freshwater turtle as a model species showed that brevetoxin-3 impacts the nervous and muscular systems, and is detoxified and eliminated primarily through the liver, bile, and feces. In this study, freshwater turtles (Trachemys scripta) were exposed to brevetoxin (PbTx-3) intratracheally at doses causing clear systemic effects, and treatment strategies aimed at reducing the postexposure neurological and muscular deficits were tested. Brevetoxin-exposed T. scripta displayed the same behaviors as animals admitted to rehabilitation centers for toxin exposure, ranging from muscle twitching and incoordination to paralysis and unresponsiveness. Two treatment regimes were tested: cholestyramine, a bile acid sequestrant; and an intravenous lipid emulsion treatment (Intralipidt) that provides an expanded circulating lipid volume. Cholestyramine was administered orally 1 hr and 6 hr post PbTx-3 exposure, but this regime failed to increase toxin clearance. Animals treated with Intralipid (100 mg/kg) 30 min after PbTx-3 exposure had greatly reduced symptoms of brevetoxicosis within the first 2 hr compared with animals that did not receive the treatment, and appeared fully recovered within 24 hr compared with toxin-exposed control animals that did not receive Intralipid. The results strongly suggest that Intralipid treatment for lipophilic toxins such as PbTx-3 has the potential to reduce morbidity and mortality in HAB-exposed sea turtles.
Assuntos
Emulsões Gordurosas Intravenosas/uso terapêutico , Toxinas Marinhas/toxicidade , Neurotoxinas/toxicidade , Oxocinas/toxicidade , Intoxicação/veterinária , Substâncias Protetoras/uso terapêutico , Tartarugas/fisiologia , Animais , Resina de Colestiramina/uso terapêutico , Intoxicação/tratamento farmacológicoRESUMO
From July 2015 to November 2016, 96 post-hatchling sea turtles were collected from 118 km of the Atlantic coastline in Florida, USA, including loggerhead, green, and hawksbill sea turtle species. Forty-five of the recovered turtles were rehabilitated and released, but the remaining 52 died and were frozen. At necropsy, the gastrointestinal tracts of most the turtles contained visible plastic, and collected particles of 27 individuals were chemically characterized by Raman microscopy as polyethylene, polypropylene, polyethylene terephthalate, and polystyrene. Mesoparticle plastic fragments 1.0-8.7 mm, microparticle fragments 20-1000 µm, and nanoparticles 5-169 nm were identified in the turtles. Polyethylene and polypropylene were the most common plastics ingested from specimens representing 54.1 and 23.7% of the total observed mesoparticles and 11.7 and 21.0% of the total observed microparticles, respectively. A plastic-to-body mass ratio of 2.07 mg/g was determined for this group. The authors suggest that ingestion of micronizing plastic by post-hatchling sea turtles is likely a substantial risk to survival of these endangered and threatened species. This study also provides some of the first evidence for the formation of nanoscopic plastic particles that we theorize forms in the post-hatchling and juvenile environment and are present post-ingestion.
Assuntos
Tartarugas , Poluentes da Água , Animais , Ingestão de Alimentos , Florida , PlásticosRESUMO
Rehabilitation efforts for live stranded marine mammals are guided by diagnostic measures of blood chemistry and hematology parameters obtained from each individual undergoing treatment. Despite the widespread use of blood parameters, reference values are not available in the literature from healthy rough-toothed dolphins ( Steno bredanensis) with which to infer the health status of an animal. We examined serum or plasma chemistry and hematology data from 17 rough-toothed dolphins either housed at Dolphin Quest French Polynesia or during their rehabilitation at the Dolphin and Whale Hospital in Sarasota, Florida, US between 1994 and 2005. Blood parameters were compared among healthy animals, rehabilitation animals that were eventually released, and rehabilitation animals that died. This study indicated significant differences in many blood parameters for the poorly known rough-toothed dolphin that are likely to vary between healthy and sick animals. These included aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, bicarbonate, and globulins, which were greater in sick dolphins, and alkaline phosphatase and total protein which were greater in healthy individuals. Total white blood cell counts were lower in healthy animals as were the absolute numbers of neutrophils, monocytes, and eosinophils. Analysis of first blood sample levels for glucose, sodium, and erythrocyte sedimentation rate may have value for triage and prognostic evaluation.
Assuntos
Criação de Animais Domésticos , Proteínas Sanguíneas , Golfinhos/sangue , Eletrólitos/sangue , Eritrócitos , Leucócitos , Animais , Feminino , Fígado/metabolismo , Masculino , Valores de ReferênciaRESUMO
Brucella ceti causes disease in Odontoceti. The absence of control serum collections and the diversity of cetaceans have hampered the standardization of serological tests for the diagnosis of cetacean brucellosis. Without a "gold" standard for sensitivity and specificity determination, an alternative approach was followed. We designed an indirect enzyme-linked immunosorbent assay (iELISA) that recognizes immunoglobulins G (IgGs) from 17 odontocete species as a single group. For the standardization, we used Brucella melitensis and Brucella abortus lipopolysaccharides, serum samples from seven resident odontocetes with no history of infectious disease displaying negative rose bengal test (RBT) reactions, and serum samples from seven dolphins infected with B. ceti. We compared the performance of the iELISA with those of the protein G ELISA (gELISA), the competitive ELISA (cELISA), and the immunofluorescence (IF) and dot blot (DB) tests, using 179 odontocete serum samples and RBT as the reference. The diagnostic potential based on sensitivity and specificity of the iELISA was superior to that of gELISA and cELISA. The correlation and agreement between the iELISA and the gELISA were relatively good (R(i/g)2 = 0.65 and kappa(i/g) = 0.66, respectively), while the correlation and agreement of these two ELISAs with cELISA were low (R(i/c)2 = 0.46, R(g/c)2 = 0.37 and kappa(i/c) = 0.62, kappa(g/c) = 0.42). In spite of using the same anti-odontocete IgG antibody, the iELISA was more specific than were the IF and DB tests. An association between high antibody titers and the presence of neurological symptoms in dolphins was observed. The prediction is that iELISA based on broadly cross-reacting anti-dolphin IgG antibody would be a reliable test for the diagnosis of brucellosis in odontocetes, including families not covered in this study.