Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 34(51): e2207832, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189863

RESUMO

Dissolving microneedle (DMN) patches are emerging as a minimally invasive and efficient transdermal drug delivery platform. Generally, noncrystalline, water-soluble, and high-molecular-weight polymers are employed in DMNs because their sufficient intermolecular interactions can endow the DMNs with necessary mechanical strength and toughness. However, high viscosity and heavy chain entanglement of polymer solutions greatly hinder processing and dissolution of polymeric DMNs. Here, a strong and tough supramolecular DMN patch made of highly water-soluble cyclodextrin (CD) derivatives is described. Due to the synergy of multiple supramolecular interactions, the CD DMN patch exhibits robust mechanical strength outperforming the state-of-the-art polymeric DMNs. The CD DMN displays ultrafast dissolution (<30 s) in skin models by virtue of the dynamic and weak noncovalent bonds, which also enables the CD DMN and its payloads to diffuse rapidly into the deep skin layer. Moreover, the unique supramolecular structure of CD allows the CD DMNs to load not only hydrophilic drugs (e.g., rhodamine B as a model) but also hydrophobic model drugs (e.g., ibuprofen). As a proof-of-concept, CD DMNs loading ibuprofen show a rapid onset of therapeutic action in a xylene-induced acute inflammation model in mice. This work opens a new avenue for the development of mechanically robust supramolecular DMNs and broadens the applications of supramolecular materials.


Assuntos
Sistemas de Liberação de Medicamentos , Ibuprofeno , Camundongos , Animais , Solubilidade , Pele , Administração Cutânea , Polímeros/química , Microinjeções
2.
J Sci Food Agric ; 91(11): 1998-2005, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21495038

RESUMO

BACKGROUND: The objective was to study soil water conservation and physiological growth of corn (Zea mays L.) using water-saving super-absorbent polymer (SAP) at 30 kg ha(-1). The effectiveness of SAP was studied under three irrigation levels (adequate, moderate and deficit) using a new type of negative hydraulic pressure controlled auto-irrigator in the years 2009 and 2010 in a greenhouse at Beijing, P.R. China. RESULTS: Eight weeks after sowing, plant height and leaf area increased significantly by 41.6 and 79.6% under deficit irrigation for SAP treatment. The SAP had little effect on shoot dry mass under adequate and moderate irrigation but increased it significantly by 133.5% under deficit irrigation. Similarly, the efficiency of water use also increased by 97.1%. Leaf water potential under adequate and moderate irrigation differs slightly for SAP application, whereas under deficit irrigation the values were exceeded significantly by 27.8%. The superior growth and water use efficiency of corn treated with SAP under deficit irrigation was ascribed to maintenance of higher relative water contents in leaves as well as intercellular carbon dioxide concentration, net photosynthesis and transpiration rate. CONCLUSIONS: Our results suggested that plant growth and different physiological activities are restricted by drought stress and the application of super-absorbent polymer could conserve soil water, making same available to plants for increased growth and biomass accumulation especially under severe water stress. Thus, application of SAP is a suitable soil management practice for the locations characterised by severe water stress.


Assuntos
Agroquímicos/química , Polímeros/química , Solo/química , Água/química , Água/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Absorção , Irrigação Agrícola , Agricultura/métodos , China , Conservação dos Recursos Naturais , Clima Desértico/efeitos adversos , Cinética , Folhas de Planta/química , Transpiração Vegetal , Estresse Fisiológico
3.
J Mater Chem B ; 8(10): 2032-2039, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049084

RESUMO

Porous polymer microneedles (MNs) have great potential in transdermal medical applications due to their three-dimensional (3D) porous structures and high porosity. However, existing approaches for the fabrication of such porous polymer MNs are complicated and only applicable to limited types of polymers. Here, we describe a facile yet effective phase inversion route to prepare polymer MNs with highly porous and interconnected pore structures. The fabrication process is simple and mild without involving high temperatures or irradiation, and can be applied to a broad spectrum of commonly used polymers (e.g., cellulose acetate (CA), polysulfone (PSF), polyethersulfone (PES), polylactic acid (PLA), etc.). Thanks to the capillary effect and large cavity given by highly porous and interconnected structures, the resulting porous polymer MNs show the capability of rapidly extracting dermal interstitial fluid (ISF) and efficiently loading/releasing drug compounds. As a proof of concept, we demonstrate the use of these porous CA MNs in the highly efficient extraction of ISF for glucose level detection and administration of insulin for hyperglycemia. Given the recent trend of painless techniques in diagnosis and treatment, the current study provides a new opportunity for the fabrication of MN-based devices for transdermal ISF extraction and drug delivery.


Assuntos
Insulina/farmacologia , Polímeros/química , Pele/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos , Feminino , Glucose/análise , Insulina/química , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Água/química
4.
J Mater Chem B ; 8(5): 928-934, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912081

RESUMO

Angiogenesis plays an important role in the occurrence and development of skin tumors and vascular anomalies (VAs). Many drugs have been adopted for the inhibition of angiogenesis, among which rapamycin (RAPA) possesses good application prospects. However, the clinical potential of RAPA for VAs is limited by its poor solubility, low bioavailability, and high cytotoxicity. To extend its application prospect for VAs treatment, in this study, we develop RAPA-loaded dissolving polymeric microneedles (RAPA DMNs) made of polyvinylpyrrolidone (PVP) due to its excellent solubilizing ability. RAPA DMNs are shown to have sufficient mechanical strength to overcome the skin barrier of the stratum corneum and could deliver RAPA to a depth of 200 µm. The microneedle shafts completely dissolve and 80% of the drug could be released within 10 min after insertion ex vivo. The DMNs-penetrated mice skin could repair itself within 4 h after the application of RAPA DMNs. RAPA DMNs also show good anti-angiogenic effect by inhibiting the growth of human umbilical vein endothelial cells (HUVECs) and decreasing the secretion of vascular endothelial growth factor (VEGF). Therefore, RAPA DMNs promisingly provide a safe and efficient approach for VAs treatment.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , Polímeros/farmacologia , Sirolimo/farmacologia , Malformações Vasculares/tratamento farmacológico , Administração Cutânea , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos , Humanos , Teste de Materiais , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Tamanho da Partícula , Polímeros/administração & dosagem , Polímeros/química , Sirolimo/administração & dosagem , Sirolimo/química , Solubilidade , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA