Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 11(34): 4298-302, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26097134

RESUMO

Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package.


Assuntos
Materiais Biocompatíveis/química , Grafite/química , Mananas/química , Teste de Materiais/métodos , Nanocompostos/química , Óxidos/química , Polímeros/química , Animais , Forma Celular , Camundongos , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Langmuir ; 30(18): 5248-55, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24754516

RESUMO

The hierarchical assembly of inorganic and organic building blocks is an efficient strategy to produce high-performance materials which has been demonstrated in various biomaterials. Here, we report a layer-by-layer (LBL) assembly method to fabricate ultrathin hybrid films from nanometer-scale ionic clusters and proteins. Two types of cationic clusters (hydrolyzed aluminum clusters and zirconium-glycine clusters) were assembled with negatively charged bovine serum albumin (BSA) protein to form high-quality hybrid films, due to their strong electrostatic interactions and hydrogen bonding. The obtained hybrid films were characterized by scanning electron microscope (SEM), UV-vis, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffraction (XRD). The results demonstrated that the cluster-protein hybrid films exhibited structural homogeneity, relative transparency, and bright blue fluorescence. More importantly, these hybrid films displayed up to a 70% increase in hardness and up to a 100% increase in reduced Young's modulus compared to the pure BSA film. These hybrid cluster-protein films could be potentially used as biomedical coatings in the future because of their good transparency and excellent mechanical properties.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Animais , Bovinos , Microscopia Eletrônica de Varredura , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Science ; 380(6651): 1252-1257, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347869

RESUMO

The hinge of bivalve shells can sustain hundreds of thousands of repeating opening-and-closing valve motions throughout their lifetime. We studied the hierarchical design of the mineralized tissue in the hinge of the bivalve Cristaria plicata, which endows the tissue with deformability and fatigue resistance and consequently underlies the repeating motion capability. This folding fan-shaped tissue consists of radially aligned, brittle aragonite nanowires embedded in a resilient matrix and can translate external radial loads to circumferential deformation. The hard-soft complex microstructure can suppress stress concentration within the tissue. Coherent nanotwin boundaries along the longitudinal direction of the nanowires increase their resistance to bending fracture. The unusual biomineral, which exploits the inherent properties of each component through multiscale structural design, provides insights into the evolution of antifatigue structural materials.


Assuntos
Materiais Biocompatíveis , Bivalves , Animais , Biomineralização
4.
Adv Healthc Mater ; 11(19): e2201248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35842766

RESUMO

Calcium phosphate (CaP) is frequently used as coating for bone implants to promote osseointegration. However, commercial CaP coatings via plasma spraying display similar microstructures, and thus fail to provide specific implants according to different surgical conditions or skeletal bone sites. Herein, inspired by the formation of natural biominerals with various morphologies mediated by amorphous precursors, CaP coatings with tunable microstructures mediated by an amorphous metastable phase are fabricated. The microstructures of the coatings are precisely controlled by both polyaspartic acid and Mg2+ . The cell biological behaviors, including alkaline phosphatase activity, mineralization, and osteogenesis-related genes expression, on the CaP coatings with different microstructures, exhibit significant differences. Furthermore, in vivo experiments demonstrate the osseointegration in different types of rats and bones indeed favors different CaP coatings. This biomimetic strategy can be used to fabricate customized bone implants that can meet the specific requirements of various surgery conditions.


Assuntos
Fosfatase Alcalina , Materiais Revestidos Biocompatíveis , Animais , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Osseointegração , Ratos , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA