Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930901

RESUMO

This study presents fibers based on methacrylic acid-methyl methacrylate (Eudragit L100) as Cu(II) adsorbents, resulting in antimicrobial complexes. Eudragit L100, an anionic copolymer synthesized by radical polymerization, was electrospun in dimethylformamide (DMF) and ethanol (EtOH). The electrospinning process was optimized through a 22-factorial design, with independent variables (copolymer concentration and EtOH/DMF volume ratio) and three repetitions at the central point. The smallest average fiber diameter (259 ± 53 nm) was obtained at 14% w/v Eudragit L100 and 80/20 EtOH/DMF volume ratio. The fibers were characterized using scanning electron microscopy (SEM), infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), and differential scanning calorimetry (DSC). The pseudo-second-order mechanism explained the kinetic adsorption toward Cu(II). The fibers exhibited a maximum adsorption capacity (qe) of 43.70 mg/g. The DSC analysis confirmed the Cu(II) absorption, indicating complexation between metallic ions and copolymer networks. The complexed fibers showed a lower degree of swelling than the non-complexed fibers. The complexed fibers exhibited bacteriostatic activity against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. This study successfully optimized the electrospinning process to produce thin fibers based on Eudragit L100 for potential applications as adsorbents for Cu(II) ions in aqueous media and for controlling bacterial growth.


Assuntos
Cobre , Ácidos Polimetacrílicos , Cobre/química , Ácidos Polimetacrílicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Metacrilatos/química , Cinética , Varredura Diferencial de Calorimetria , Testes de Sensibilidade Microbiana
2.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361681

RESUMO

Gelatin (GE), amino-functionalized polyphenolic tannin derivative (TN), and graphene oxide (GO) were associated to yield thermo- and pH-responsive hydrogels for the first time. Durable hydrogel assemblies for drug delivery purposes were developed using the photosensitizer methylene blue (MB) as a drug model. The cooling GE/TN blends provide brittle physical assemblies. To overcome this disadvantage, different GO contents (between 0.31% and 1.02% wt/wt) were added to the GE/TN blend at 89.7/10.3 wt/wt. FTIR and RAMAN spectroscopy analyses characterized the materials, indicating GO presence in the hydrogels. Incorporation studies revealed a total MB (0.50 mg/mL) incorporation into the GE/TN-GO hydrogel matrices. Additionally, the proposed systems present a mechanical behavior similar to gel. The GO presence in the hydrogel matrices increased the elastic modulus from 516 to 1650 Pa. SEM revealed that hydrogels containing MB present higher porosity with interconnected pores. Dissolution and swelling degree studies revealed less stability of the GE/TN-GO-MB hydrogels in SGF medium (pH 1.2) than SIF (pH 6.8). The degradation increased in SIF with the GO content, making the polymeric matrices more hydrophilic. MB release studies revealed a process controlled by Fickian diffusion. Our results point out the pH-responsible behavior of mechanically reinforced GE/TN-GO-MB hydrogels for drug delivery systems purposes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gelatina/química , Grafite/química , Hidrogéis/química , Azul de Metileno/administração & dosagem , Taninos/química , Temperatura de Transição , Materiais Biocompatíveis/química , Difusão , Liberação Controlada de Fármacos , Módulo de Elasticidade , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Porosidade
3.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212884

RESUMO

Pectin and chitosan films containing glycerol (Gly) at 5, 10, 15, 20, 30, and 40 wt % were prepared in an aqueous HCl solution (0.10 M) by the solvent evaporation method. The unwashed film (UF) containing 40 wt % Gly (UF40) had elongation at break (ε, %) of 19%. Washed films (WFs) had high tensile strength (σ > 46 MPa) and low elongation at break (ε, <5.0%), enabling their use in food packaging applications. The polymers' self-assembling occurred during the washing, increasing the stiffness. The XPS analysis suggests that some HCl is lost during the drying process, resulting in a low acid content on the UF surfaces. The UF40 (at 5.0 mg/mL) exhibits cytocompatibility toward mammalian cells and antimicrobial and anti-adhesive properties against Escherichia coli. The remaining HCl in the UF40 can be a disadvantage for food packaging applications; the UF40 (∅ = 8.5 mm; 55 µm thickness) releases H3O+/HCl, reducing the pH to approximately 3.0 when kept in 200 mL distilled water for approximately 30 min. Therefore, we propose the use of UF40 to coat commercial food packaging. The UF40 has low permeability to water vapor and oxygen and works as a barrier against ultraviolet light. The UF40 is also colorless and completely transparent. The UF40 maintained tomatoes' structural integrity for 18 days at room temperature with no oxidation or microorganism contamination. This paper presents a critical viewpoint concerning chitosan-based films with antimicrobial activities.


Assuntos
Antibacterianos/química , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/crescimento & desenvolvimento , Embalagem de Alimentos , Glicerol/química , Membranas Artificiais , Pectinas/química
4.
Int J Mol Sci ; 15(12): 22438-70, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25486057

RESUMO

Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not), but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales) make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein's hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein's structure allow a myriad of applications of such materials with great potential in the near future.


Assuntos
Tecnologia Biomédica , Embalagem de Alimentos/tendências , Preparações Farmacêuticas/química , Zeína/química , Materiais Biocompatíveis/química , Biodegradação Ambiental , Zeína/ultraestrutura
5.
Int J Mol Sci ; 15(11): 20800-32, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25402643

RESUMO

Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Anti-Infecciosos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/síntese química , Fungos/efeitos dos fármacos , Humanos , Micoses/tratamento farmacológico , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos
6.
Int J Biol Macromol ; 253(Pt 5): 127087, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769774

RESUMO

Given the environmental issues caused by the extensive use of conventional petroleum-based packaging, this work proposes functional films based on commercial κ-carrageenan (κc), poly(vinyl alcohol) (PVA), and gallic acid (GA) prepared by the "casting" method. Metallic ions in the κc composition stabilized the films, supporting processability and suitable mechanical properties. However, the incorporated GA amount (6.25 and 10 wt%) in the films created from an aqueous κc solution at 3.0 % wt/v (κc3) prevented crystalline domains in the resulting materials. The κc3/GA6.25 and κc3/GA10 films had less tensile strength (8.50 ± 0.61 and 10.28 ± 0.65 MPa) and high elongation at break (2.36 ± 0.16 and 1.19 ± 0.17 %) compared to the other samples, respectively. Low κc contents (κc2.5/GA6.25 and κc2.5/GA10) promoted stiff films and less permeability to water vapor (5.36 ± 0.51 and 3.76 ± 0.02 [×10-12 g(Pa × m × s)-1], respectively. The κc/GA weight ratio also influenced the film wettability, indicating water contact angles (WCAs) between 55 and 74°. The surface wettability implies a low oil permeability and high water swelling capacity of up to 1600 %. The κc/GA also played an essential role in the film's antimicrobial action against Staphylococcus aureus and Escherichia coli. Thus, the κc3/GA10 film showed suitable physical, chemical, and biological properties, having the potential to be applied as food coatings.


Assuntos
Ácido Gálico , Álcool de Polivinil , Carragenina/química , Álcool de Polivinil/química , Resistência à Tração , Permeabilidade , Escherichia coli , Embalagem de Alimentos/métodos
7.
Biomacromolecules ; 13(11): 3711-22, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22998803

RESUMO

N-Trimethyl chitosan (TMC), an antibacterial agent, and heparin (HP), an antiadhesive biopolymer, were alternately deposited on modified polystyrene films, as substrates, to built antiadhesive and antibacterial multilayer films. The properties of the multilayer films were investigated by Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, and Kelvin force microscopy. In vitro studies of controlled release of HP were evaluated in simulated intestinal fluid and simulated gastric fluid. The initial adhesion test of E. coli on multilayer films surface showed effective antiadhesive properties. The in vitro antibacterial test indicated that the multilayer films of TMC/HP based on TMC80 can kill the E. coli bacteria. Therefore, antiadhesive and antibacterial multilayer films may have good potential for coatings and surface modification of biomedical applications.


Assuntos
Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/química , Quitosana/química , Heparina/química , Antibacterianos/farmacologia , Biopolímeros , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Heparina/farmacocinética , Heparina/farmacologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Poliestirenos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
8.
Int J Biol Macromol ; 183: 727-742, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33915214

RESUMO

In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.


Assuntos
Anti-Infecciosos/síntese química , Materiais Biocompatíveis/síntese química , Carragenina/química , Quitosana/química , Polissacarídeos Bacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Embalagem de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polieletrólitos , Cicatrização
9.
Carbohydr Res ; 499: 108194, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234262

RESUMO

Strategies for incorporating water-insoluble photosensitisers (PS) in drug delivery systems have been extensively studied. In this work, we evaluate the formation, characterisation, drug sorption studies, and cytotoxicity of chitosan (CHT)/chondroitin sulphate (CS) polyelectrolyte complexes (PECs) coated with polystyrene-block-poly(acrylic acid) (PS-b-PAA) nanoparticles (NPs) loaded with chloroaluminum phthalocyanine (AlClPc). The PECs were characterised by infrared spectroscopy (FTIR), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PS-b-PAA NPs on the PEC surface was confirmed by scanning electron microscopy (SEM). Additionally, optical images distinguished the PEC structures containing PS-b-PAA or PS-b-PAA/AlClPc from the unloaded PEC. Kinetic and equilibrium studies investigate the sorption capacity of the PEC/PS-b-PAA toward AlClPc. The encapsulation efficiency reached 95% at 190 µg mL-1 AlClPc after only 15 min. The Brunauer-Emmett-Teller (BET) isotherm and pseudo-second-order kinetic fitted well to the experimental data. The PS-b-PAA NPs on the PEC surfaces increase the AlClPc bioavailability and the PEC structure stabilizes the PS-b-PAA/AlClPc nanostructures. The materials were cytocompatible upon healthy VERO (kidney epithelial cells), and cytotoxic against colorectal cancerous cells (HT-29 cells). For the first time, we associate PS-b-PAA/AlClPc with a hydrophilic and cytocompatible polysaccharide matrix. We suggest the use of these materials in strategies to treat cancer by using photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Polieletrólitos/farmacologia , Polissacarídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Configuração de Carboidratos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Tamanho da Partícula , Polieletrólitos/síntese química , Polieletrólitos/química , Polissacarídeos/síntese química , Polissacarídeos/química
10.
J Biomed Mater Res A ; 108(4): 992-1005, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909867

RESUMO

Biomaterial-associated thrombus formation and bacterial infection remain major challenges for blood-contacting devices. For decades, titanium-based implants have been largely used for different medical applications. However, titanium can neither suppress blood coagulation, nor prevent bacterial infections. To address these challenges, tanfloc/heparin polyelectrolyte multilayers on titania nanotubes array surfaces (NT) were developed. The surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. To evaluate the hemocompatibility of the surfaces, fibrinogen adsorption, Factor XII activation, and platelet adhesion and activation were analyzed. The antibacterial activity was investigated against Gram-negative P. aeruginosa and Gram-positive S. aureus. Bacterial adhesion and morphology, as well as biofilm formation, were analyzed using fluorescence microscopy and SEM. The anti-thrombogenic properties of the surfaces were demonstrated by significant decreases in fibrinogen adsorption, Factor XII activation, and platelet adhesion and activation. Modifying NT with tanfloc/heparin also reduces the adhesion and proliferation of P. aeruginosa and S. aureus bacteria after 24 hr of incubation, with no biofilm formation. The modified NT surfaces with tanfloc/heparin polyelectrolyte multilayers are a promising biomaterial for use on implant surfaces because of their enhanced blood biocompatibility and antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Heparina/farmacologia , Nanotubos/química , Polieletrólitos/farmacologia , Titânio/farmacologia , Adsorção , Fator XII/metabolismo , Fibrinogênio/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Nitrogênio/química , Espectroscopia Fotoeletrônica , Adesividade Plaquetária/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície , Água/química
11.
Mater Sci Eng C Mater Biol Appl ; 106: 110258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753363

RESUMO

Here, we have demonstrated the production and characterization of hydrogel scaffolds based on chitosan/gellan gum (CS/GG) assemblies, without any covalent and metallic crosslinking agents, conventionally used to yield non-soluble polysaccharide-based materials. The polyelectrolyte complexes (physical hydrogels called as PECs) are characterized by Fourier-transform infrared spectroscopy, wide-angle X-ray scattering, and scanning electron microscopy. Hydrogels containing chitosan (CS) excesses (ranging from 60 to 80 wt%) were created. Durable polysaccharide-based scaffolds with structural homogeneity and interconnecting pore networks are developed by modulating the CS/GG weight ratio. The CS/GG hydrogel prepared at 80/20 CS/GG weight ratio (sample CS/GG80-20) is cytocompatible, supporting the attachment, growth, and spreading of bone marrow mesenchymal stem cells (BMSCs) after nine days of cell culture. The cytocompatibility is correlated to the swelling capacity of the PEC in PBS buffer (pH 7.4). By controlling the CS content, we can tune the water uptake of the material, enhancing the capacity to serve as a three-dimensional cell scaffold for BMSCs. This work presents for the first time that CS/GG hydrogels can be applied as scaffolds for tissue engineering purposes.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Polissacarídeos Bacterianos/química , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
12.
Mater Sci Eng C Mater Biol Appl ; 107: 110357, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761187

RESUMO

This study reports the synthesis, characterization and biological properties of films based on poly(vinyl alcohol) (PVA) and a cationic tannin polymer derivative (TN). Films are obtained from polymeric blends by tuning the PVA/TN weight ratios. The materials are characterized through infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle measurements, mechanical analyses, and scanning electron microscopy. More hydrophilic surfaces are created by modulating the PVA and TN concentrations in the blends. Disintegration tests showed that the films present durability in phosphate buffer (pH 7.4) and low stability in simulated gastric fluid (pH 1.2). The film created at 90/10 PVA/TN weight ratio and crosslinked at 109 PVA/glutaraldehyde molar ratio (sample PVA10/TN10) supports the attachment and proliferation of bone marrow mesenchymal stem cells after 7 days of culture. The scaffolding capacity of the PVA10/TN10 surface is compared with titanium, one of the most important biomedical materials used in bone replacements. Also, the PVA/TN films exhibited cytocompatibility, antioxidant and antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. These properties make PVA/TN films are candidates for biomedical applications in the tissue engineering field.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Taninos/farmacocinética , Animais , Antibacterianos/química , Antioxidantes/farmacocinética , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Glutaral/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Álcool de Polivinil/química , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Taninos/química
13.
Int J Biol Macromol ; 165(Pt A): 582-590, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991902

RESUMO

Biodegradable films have been a great alternative compared to non-renewable sources because of their cytocompatibility, biodegradability, and antimicrobial features. These properties may raise the foodstuff shelf life, reducing costs and economic losses. Indeed, biodegradable films can also reduce the environmental pollution promoted by non-biodegradable conventional packs. For the first time, biodegradable films were produced by casting commercials kappa-carrageenan (κ-car) and cassava starch at different κ-carrageenan/cassava starch weight ratios. Physical, thermal, and mechanical properties were evaluated. Apparent opacity and color analyses suggest that the films present high transparency. The sample 0κ-c supported a film with high water solubility (39.22%) and a low swelling degree (391.6%). The lowest water vapor permeability (WVP) was observed for 50κ-c (3.01×10-8g (Pams)-1). The oil permeability varied from 0.0033 to 0.0043mmm2 d-1. The 100κ-c and 75κ-c films (with high κ-carrageenan contents) had higher stiffness (19.23 and 25.88MPa, respectively) than the 25κ-c and 0κ-c films with elongation at break (ε) of 21.60 and 67.65%, respectively. The thermal stability increased as the starch concentration raised in the blend. We produced low-cost biodegradable films from commercial polysaccharides. These films can be used as food packs.


Assuntos
Carragenina/química , Embalagem de Alimentos , Manihot/química , Membranas Artificiais , Amido/química , Carragenina/economia , Manihot/economia
14.
Int J Biol Macromol ; 161: 977-998, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32553969

RESUMO

Conventional strategies (Turkevich's, and modified Turkevich's methods) often synthesize gold nanoparticles (AuNPs). These pathways produce AuNPs using toxic chemistries to reduce Au(III) and stabilize Au(0) atoms upon the AuNP surfaces. To overcome the disadvantages of conventional approaches, chitosan and chitosan-based materials associate with Au(III) to produce composites. Chitosan and derivatives reduce Au(III) and stabilize AuNPs, promoting biocompatibility to the composites, following approaches in-situ. In this review, we report methods to develop chitosan/AuNPs-based composites. The main criticism is about the mechanism of composite formation. Also, we highlight applications of chitosan/AuNPs-based devices in the biomedical arena. We report the synthesis of biosensors, drug delivery devices, scaffolds, antimicrobial coatings, and others. The major criticism is concerning the material design and the lack of data regarding the composite biocompatibility. We support a critical viewpoint.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Pesquisa Biomédica/métodos , Humanos
15.
Mater Sci Eng C Mater Biol Appl ; 112: 110919, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409070

RESUMO

To develop hemocompatible surfaces, a cationic tannin derivate (TN) was used to prepare polyelectrolyte multilayers (PEMs) with the glycosaminoglycans heparin (HEP) and chondroitin sulfate (CS). The surface chemistry of the PEMs was characterized using X-ray photoelectron spectroscopy and water contact angle measurements. PEMs assembled with chitosan (CHI) and HEP or CS were used as controls. We investigate the hemocompatibility of PEMs by analyzing the adsorption of key blood serum proteins, adhesion and activation of platelets, and blood clotting kinetics. TN- and CHI-based PEMs adsorb similar amounts of albumin, whereas fibrinogen adsorption was more pronounced on TN-based PEMs, due to strong association with catechol groups. However, TN-based PEMs significantly reduce both platelet adhesion and platelet activation, while CHI-based PEMs promote platelet adhesion and activation. The whole-blood clotting kinetics assay also shows lower blood coagulation on TN-based PEMs. TN is an amphoteric, cationic, condensed tannin derivative with resonance structures. It also contains catechol groups, which are similar to those in mussel adhesive protein. These chemical features enable strong association with fibrinogen, which promotes the platelet-repelling effect. This study provides a new perspective for understanding platelet adhesion and activation on biomaterial surfaces, toward the development of new blood-compatible surfaces using a tannin derivative-based polymer.


Assuntos
Materiais Biocompatíveis/química , Plaquetas/metabolismo , Proteínas Sanguíneas/química , Polieletrólitos/química , Taninos/química , Adsorção , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Quitosana/química , Sulfatos de Condroitina/química , Heparina/química , Humanos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Polifenóis/química , Propriedades de Superfície , Molhabilidade
16.
Int J Biol Macromol ; 128: 114-123, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682481

RESUMO

Here we report a new and straightforward method to yield durable polyelectrolyte complexes (hydrogel PECs) from gellan gum (GG) and chitosan (CS) assemblies, without metallic and covalent crosslinking agents, commonly used to produce GG and CS-based hydrogels, respectively. This new approach overcomes challenges of obtaining stable and durable GG-based hydrogels with structural homogeneity, avoiding precipitation and aqueous instability, typical of PEC-based materials. PECs are created by blending CS:GG solutions (at 60 °C) with GG:CS weight ratios between 80:20 to 40:60. X-ray photoelectron spectroscopy (XPS) analysis shows that CS-GG chains are interacting by electrostatic and intermolecular forces, conferring a high degree of association to the washed PECs, characteristic of self-assembling of polymer chains. The CS:GG weight ratio can be tuned to improve polyelectrolyte complex (PEC) high porosity, stability, porous homogeneity, and degradation rate. Physical and thermosensitive CS/GG-based hydrogels can have advantages over conventional materials produced by chemical processes.


Assuntos
Quitosana/química , Polissacarídeos Bacterianos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Análise Espectral , Termodinâmica
17.
Int J Biol Macromol ; 102: 1186-1194, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28487197

RESUMO

Thermosensitive hydrogels based on chitosan/pectin (CS/Pec) and CS/Pec/gold nanoparticles (CS/Pec/AuNPs) were successfully prepared with different AuNP levels. Using a tilting method, gelation temperature was demonstrated to decrease when the amount of AuNPs increased and pectin concentrations decreased. The presence of AuNPs in the CS/Pec composite was evaluated via WAXS and UV-vis techniques, while SEM analysis assessed the average size of pores (350-600µm). All samples were extremely cytocompatible with many cell types, such as normal kidney epithelial cells (VERO cells), epithelial colorectal adenocarcinoma cells (HT-29 cells), HPV-16 positive human cervical tumour cells (SiHa cells), kidney epithelial cells (LLCMK2 cells) and murine macrophage cells (J774A1 cells). Cell viability assays using the MTT method upon mouse preosteoblastic cells (MC3T3-E1 cells) showed that CS/Pec and CS/Pec/AuNPs composites had the potential to foster proliferation and growth of bone cells, making them possible stimulators for reconstruction of bone tissues.


Assuntos
Quitosana/química , Ouro/química , Hidrogéis/química , Nanopartículas Metálicas/química , Pectinas/química , Temperatura , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Chlorocebus aethiops , Humanos , Hidrogéis/farmacologia , Camundongos , Células Vero
18.
J Colloid Interface Sci ; 474: 9-17, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27089015

RESUMO

Heparin and different chitosan derivatives were applied to produce stable electrostatic layer-by-layer assemblies and further used as coating technique to inhibit natural inflammatory response to implants. Heparin was assembled with chitosan and N-methylated chitosan derivatives, namely N,N-dimethyl chitosan (DMC) and N,N,N-trimethyl chitosan (TMC), by dipping method. DMC and TMC (chitosan derivatives) were synthesized and characterized before LbL assembly. Ellipsometry, quartz crystal microbalance (QCM-D), and contact angle were used to demonstrate the deposition of polyelectrolyte multilayers onto silicon wafers using polyelectrolyte solutions with different ionic strength. The biological properties of these films were evaluated by cell culture assays using NIH/3T3 fibroblast cells. LbL assemblies of Heparin and chitosan derivatives showed to be biocompatible, and at the same time they strongly hinder the proliferation speed of fibroblasts up to 40-fold factors. Therefore, the multilayers prepared from heparin and chitosan derivatives have good features to be used as an alternative coating treatment for biomedical implants with reduced body rejection properties.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/análogos & derivados , Quitosana/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Heparina/análogos & derivados , Heparina/farmacologia , Eletricidade Estática , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/síntese química , Quitosana/química , Heparina/síntese química , Heparina/química , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Cloreto de Sódio/farmacologia , Propriedades de Superfície
19.
Int J Biol Macromol ; 79: 748-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26051341

RESUMO

Polyelectrolyte complex (beads) based on N,N,N-trimethyl chitosan/alginate was successful obtained and silver nanoparticles (AgNPs) were loaded within beads. In vitro cytotoxicity assays using beads/silver nanoparticles (beads/AgNPs) provided results, indicating that this material significantly inhibited the growth of colon cancer cells (Caco-2). In vitro release studies showed that the beads stabilized AgNPs and repressed Ag(0) oxidation under gastric conditions (pH 2.0). On the other hand, at physiological condition (pH 7.4) the beads/AgNPs released 3.3 µg of Ag(+) per each beads milligram. These studies showed that the concentration of Ag(+) released (3.3 µg) was cytotoxic for the Caco-2 cells and was not cytotoxic on healthy VERO cells. This result opens new perspectives for the manufacture of biomaterials based on beads/AgNPs with anti-tumor properties.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Quitosana/química , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Células CACO-2 , Chlorocebus aethiops , Liberação Controlada de Fármacos , Suco Gástrico/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas Metálicas/ultraestrutura , Microesferas , Prata/química , Especificidade da Espécie , Células Vero
20.
Int J Pharm ; 477(1-2): 197-207, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25311176

RESUMO

For the first time, polyelectrolyte complex based on poly[(2-dimethylamino) ethyl methacrylate] (PDMAEMA) and chondroitin sulfate (CS) was prepared. The properties of novel material and precursors were investigated by WAXS, FTIR, TGA, SEM and DLS analysis. The PDMAEMA/CS PECs presented hydrophilic-hydrophobic transition at pHs 6.0, 7.0 and 8.0 whereas the non-complexed PDMAEMA showed such a transition at pH 8.0 and not at pHs 6.0 and 7.0. Studies of CS release from PECs at pHs 6 and 8 confirmed that the samples possess the potential to release the CS in alkaline and not in acidic conditions. Since PECs are thermo-responsive due to the reduction of LCST caused by the increase in pH, the release of CS was dependent on temperature and pH factors. Cytotoxicity assays using healthy VERO cells showed that the complexation between CS and PDMAEMA increased the PECs' biocompatibility related to PDMAEMA. However, the biocompatibility depends on the amount of CS present in the PECs.


Assuntos
Sulfatos de Condroitina/química , Composição de Medicamentos , Metacrilatos/química , Nylons/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Sulfatos de Condroitina/toxicidade , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Eletrólitos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/toxicidade , Nylons/toxicidade , Solubilidade , Propriedades de Superfície , Temperatura , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA