RESUMO
Upon contact with biological fluids, the surface of nanoparticles is surrounded by many types of proteins, forming a so-called "protein corona". The physicochemical properties of the nanoparticle/corona complex depend predominantly on the nature of the protein corona. An understanding of the structure of the corona and the resulting complex provides insight into the structure-activity relationship. Here, we structurally evaluate the soft and hard components of the protein corona, formed from polystyrene (PS) nanoplastics and human serum albumin (HSA). Using circular dichroism spectroscopy to elucidate the structure of HSA within the complex, we establish the effect of nanoparticle size and pH on the nature of the protein corona formed- whether hard or soft. Despite the weak interaction between PS and the HSA corona, small angle neutron scattering revealed the formation of a complex structure that enhanced the intermolecular interactions between HSA proteins, PS particles, and the HS/PSA complexes. Fractal formation occurred under conditions where the interaction between PS and HSA was strong, and increasing HSA concentrations suppressed the degree of aggregation. The size of the nanoparticles directly influenced the nature of the protein corona, with larger particles favoring the formation of a soft corona, due to the decreased PS-HSA attraction.
Assuntos
Nanoestruturas/química , Plásticos/química , Poliestirenos/química , Coroa de Proteína/química , Albumina Sérica Humana/química , Humanos , Concentração de Íons de Hidrogênio , Nêutrons , Tamanho da Partícula , Espalhamento de Radiação , Relação Estrutura-AtividadeRESUMO
Multiple international agencies have recently raised environmental and health concerns regarding plastics in nanoforms (nanoplastics), but there is insufficient knowledge of their properties to allow for an accurate risk assessment to be conducted and any risks managed. For this reason, research into the toxicity of nanoplastics has focused strongly on documenting their impacts on biological organisms. One scope of this review is to summarise the recent findings on the adverse effects on biological organisms and strategies which can be adopted to advance our understanding of nanoplastic properties and their toxicity. Specifically, a mechanistic approach has already been employed in nanotoxicology, which focuses on the cause-and-effect relationships to establish a tool that predicts the biological impacts based on nanoparticle characteristics. Identifying the chemical and biological bases behind the observed biological effects (such as in vitro cellular response) is a major challenge, due to the intricate nature of nanoparticle-biological molecule complexes and an unawareness of their interaction with other biological targets, particularly at interfacial level. An exemplary case includes protein corona formation and ecological molecule corona (eco-corona) for nanoplastics. Therefore, the second scope of this review is to discuss recent findings and importance of (for both non-plastic and plastic nanoparticles) coronae formation and structure. Finally, we discuss the opportunities provided by model system approaches (model protein corona and lipid bilayer) to deepen the understanding of the above-mentioned perspectives, and corroborate the findings from in vitro experiments.
Assuntos
Microplásticos , Nanopartículas , Plásticos , PoliestirenosRESUMO
Plastic waste is ubiquitously spread across the world and its smaller analogs-microplastics and nanoplastics-raise particular health concerns. While biological impacts of microplastics and nanoplastics have been actively studied, the chemical and biological bases for the adverse effects are sought after. This work explores contributory factors by combining results from in vitro and model mammalian membrane experimentation to assess the outcome of cell/nanoplastic interactions in molecular detail, inspecting the individual contribution of nanoplastics and different types of protein coronae. The in vitro study showed mild cytotoxicity and cellular uptake of polystyrene (PS) nanoplastics, with no clear trend based on nanoplastic size (20 and 200 nm) or surface charge. In contrast, a nanoplastic size-dependency on bilayer disruption was observed in the model system. This suggests that membrane disruption resulting from direct interaction with PS nanoplastics has little correlation with cytotoxicity. Furthermore, the level of bilayer disruption was found to be limited to the hydrophilic headgroup, indicating that transmembrane diffusion was an unlikely pathway for cellular uptake-endocytosis is the viable mechanism. In rare cases, small PS nanoplastics (20 nm) were found in the vicinity of chromosomes without a nuclear membrane surrounding them; however, this was not observed for larger PS nanoplastics (200 nm). We hypothesize that the nanoplastics can interact with chromosomes prior to nuclear membrane formation. Overall, precoating PS particles with protein coronae reduced the cytotoxicity, irrespective of the corona type. When comparing the two types, the extent of reduction was more apparent with soft than hard corona.
Assuntos
Nanopartículas , Coroa de Proteína , Animais , Microplásticos , Nanopartículas/toxicidade , Tamanho da Partícula , Plásticos , PoliestirenosRESUMO
A major challenge in understanding nanoplastic toxicity (or nanoparticles in general) lies in establishing the causal relationships between its physical properties and biological impact. This difficulty can be attributed to surface alterations that follow the formation of a biological complex around the nanoplastic, as exemplified by protein coronae. The protein corona is known to be responsible for the biological response elicited, although its own structure and attributes remain unknown. We approach this knowledge gap by independently studying the structure of soft and hard coronae using neutron scattering techniques. We investigated the formation and the structure of corona proteins (human serum albumin and lysozyme) and the resulting protein corona complexes with polystyrene nanoplastics of different sizes (20 and 200 nm) and charges. Soft corona complexes (regardless of protein type) adopted a structure where the nanoplastics were surrounded by a loose protein layer (â¼2-3 protein molecules thick). Hard corona complexes formed fractal-like aggregates, and the morphology of which is known to be harmful to cellular membranes. In most cases, hard-corona coated nanoplastics also formed fractal-like aggregates in solution. Nanoplastic size affected the structures of both the protein corona and the intrinsic protein: more significant conformational change was observed in the hard corona proteins around smaller nanoparticles compared to larger ones, as the self-association forces holding the nanoplastic/protein complex together were stronger. This also implies that protein-dependent biochemical processes are more likely to be disrupted by smaller polystyrene nanoplastics, rather than larger ones.
Assuntos
Muramidase/química , Nanoestruturas/química , Poliestirenos/química , Coroa de Proteína/química , Albumina Sérica Humana/química , Dicroísmo Circular , Muramidase/metabolismo , Tamanho da Partícula , Agregados Proteicos , Estrutura Secundária de Proteína , Albumina Sérica Humana/metabolismoRESUMO
Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing ß-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels.