Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103100, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38824640

RESUMO

Adult humans cannot regenerate the enamel-forming cell type, ameloblasts. Hence, human induced pluripotent stem cell (hiPSC)-derived ameloblasts are valuable for investigating tooth development and regeneration. Here, we present a protocol for generating three-dimensional induced early ameloblasts (ieAMs) utilizing serum-free media and growth factors. We describe steps for directing hiPSCs toward oral epithelium and then toward ameloblast fate. These cells can form suspended early ameloblast organoids. This approach is critical for understanding, treating, and promoting regeneration in diseases like amelogenesis imperfecta. For complete details on the use and execution of this protocol, please refer to Alghadeer et al.1.


Assuntos
Ameloblastos , Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas , Ameloblastos/citologia , Ameloblastos/metabolismo , Humanos , Meios de Cultura Livres de Soro , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38259324

RESUMO

Over 90% of the U.S. adult population suffers from tooth structure loss due to caries. Most of the mineralized tooth structure is composed of dentin, a material produced and mineralized by ectomesenchyme derived cells known as odontoblasts. Clinicians, scientists, and the general public share the desire to regenerate this missing tooth structure. To bioengineer missing dentin, increased understanding of human tooth development is required. Here we interrogate at the single cell level the signaling interactions that guide human odontoblast and ameloblast development and which determine incisor or molar tooth germ type identity. During human odontoblast development, computational analysis predicts that early FGF and BMP activation followed by later HH signaling is crucial. Application of this sci-RNA-seq analysis generates a differentiation protocol to produce mature hiPSC derived odontoblasts in vitro (iOB). Further, we elucidate the critical role of FGF signaling in odontoblast maturation and its biomineralization capacity using the de novo designed FGFR1/2c isoform specific minibinder scaffolded as a C6 oligomer that acts as a pathway agonist. We find that FGFR1c is upregulated in functional odontoblasts and specifically plays a crucial role in driving odontoblast maturity. Using computational tools, we show on a molecular level how human molar development is delayed compared to incisors. We reveal that enamel knot development is guided by FGF and WNT in incisors and BMP and ROBO in the molars, and that incisor and molar ameloblast development is guided by FGF, EGF and BMP signaling, with tooth type specific intensity of signaling interactions. Dental ectomesenchyme derived cells are the primary source of signaling ligands responsible for both enamel knot and ameloblast development.

3.
Dev Cell ; 58(20): 2163-2180.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37582367

RESUMO

Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.


Assuntos
Esmalte Dentário , Odontogênese , Dente , Humanos , Ameloblastos/metabolismo , Amelogênese/genética
4.
Adv Biol (Weinh) ; 6(2): e2101308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958183

RESUMO

Charcot-Marie-Tooth disease type 2D (CMT2D), is a hereditary peripheral neuropathy caused by mutations in the gene encoding glycyl-tRNA synthetase (GARS1). Here, human induced pluripotent stem cell (hiPSC)-based models of CMT2D bearing mutations in GARS1 and their use for the identification of predictive biomarkers amenable to therapeutic efficacy screening is described. Cultures containing spinal cord motor neurons generated from this line exhibit network activity marked by significant deficiencies in spontaneous action potential firing and burst fire behavior. This result matches clinical data collected from a patient bearing a GARS1P724H mutation and is coupled with significant decreases in acetylated α-tubulin levels and mitochondrial movement within axons. Treatment with histone deacetylase 6 inhibitors, tubastatin A and CKD504, improves mitochondrial movement and α-tubulin acetylation in these cells. Furthermore, CKD504 treatment enhances population-level electrophysiological activity, highlighting its potential as an effective treatment for CMT2D.


Assuntos
Doença de Charcot-Marie-Tooth , Glicina-tRNA Ligase , Células-Tronco Pluripotentes Induzidas , Transporte Axonal , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Glicina-tRNA Ligase/genética , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Tubulina (Proteína)/genética
5.
Sci Rep ; 9(1): 2195, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778087

RESUMO

Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-ß) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.


Assuntos
Senescência Celular , Polpa Dentária/citologia , Metabolismo Energético , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipogenia , Biomarcadores , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunofenotipagem , Odontogênese , Osteogênese , Proteômica , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA