Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(17): 6796-6808, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30837269

RESUMO

Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.


Assuntos
Fímbrias Bacterianas/metabolismo , Streptococcus/metabolismo , Biopolímeros/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Metilação , Conformação Proteica
2.
Mol Cell ; 47(5): 755-66, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22819324

RESUMO

The T7 phage-encoded small protein Gp2 is a non-DNA-binding transcription factor that interacts with the jaw domain of the Escherichia coli (Ec) RNA polymerase (RNAp) ß' subunit and inhibits transcriptionally proficient promoter-complex (RPo) formation. Here, we describe the high-resolution solution structure of the Gp2-Ec ß' jaw domain complex and show that Gp2 and DNA compete for binding to the ß' jaw domain. We reveal that efficient inhibition of RPo formation by Gp2 requires the amino-terminal σ(70) domain region 1.1 (R1.1), and that Gp2 antagonizes the obligatory movement of R1.1 during RPo formation. We demonstrate that Gp2 inhibits RPo formation not just by steric occlusion of the RNAp-DNA interaction but also through long-range antagonistic effects on RNAp-promoter interactions around the RNAp active center that likely occur due to repositioning of R1.1 by Gp2. The inhibition of Ec RNAp by Gp2 thus defines a previously uncharacterized mechanism by which bacterial transcription is regulated by a viral factor.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/enzimologia , Proteínas Repressoras/metabolismo , DNA Bacteriano/química , DNA Bacteriano/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
3.
Microbiology (Reading) ; 158(Pt 11): 2753-2764, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22977089

RESUMO

The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the ß' jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the ß' jaw antagonizes several steps associated with interactions between the RNAp and promoter DNA, leading to inhibition of transcription at the open promoter complex formation step. In the structure of the complex formed between Gp2 and a fragment of the ß' jaw, amino acid residues in the ß3 strand of Gp2 contribute to the primary interaction interface with the ß' jaw. The 7009 E. coli strain is resistant to T7 because it carries a charge reversal point mutation in the ß' jaw that prevents Gp2 binding. However, a T7 phage encoding a mutant form of Gp2, called Gp2(ß), which carries triple amino acid substitutions E24K, F27Y and R56C, can productively infect this strain. By studying the molecular basis of inhibition of RNAp from the 7009 strain by Gp2(ß), we provide several lines of evidence that the E24K and F27Y substitutions facilitate an interaction with RNAp when the primary interaction interface with the ß' jaw is compromised. The proposed additional interaction interface between RNAp and Gp2 may contribute to the multipronged mechanism of transcription inhibition by Gp2.


Assuntos
Bacteriófago T7/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacteriófago T7/química , Bacteriófago T7/genética , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Regulação para Baixo , Inibidores Enzimáticos/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , Proteínas Repressoras/química , Alinhamento de Sequência , Proteínas Virais
4.
Curr Protein Pept Sci ; 13(8): 739-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23305361

RESUMO

A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Bactérias/citologia , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA