Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Bioconjug Chem ; 35(6): 744-749, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38809040

RESUMO

Bioconjugation of polymers to proteins is a method to impart improved stability and pharmacokinetic properties to biologic systems. However, the precise effects of polymer architecture on the resulting bioconjugates are not well understood. Particularly, cyclic polymers are known to possess unique features such as a decreased hydrodynamic radius when compared to their linear counterparts of the same molecular weight, but have not yet been studied. Here, we report the first bioconjugation of a cyclic polymer, poly(ethylene glycol) (PEG), to a model protein, T4 lysozyme, containing a single engineered cysteine residue (V131C). We compare the stability and activity of this conjugate with those of a linear PEG-T4 lysozyme analogue of similar molecular weight. Furthermore, we used molecular dynamics (MD) simulations to determine the behavior of the polymer-protein conjugates in solution. We introduce cyclic polymer-protein conjugates as potential candidates for the improvement of biologic therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Muramidase , Polietilenoglicóis , Polietilenoglicóis/química , Muramidase/química , Bacteriófago T4/enzimologia
2.
J Am Chem Soc ; 144(13): 6050-6058, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35321547

RESUMO

Traceless self-immolative linkers are widely used for the reversible modification of proteins and peptides. This article describes a new class of traceless linkers based on ortho- or para-hydroxybenzylamines. The introduction of electron-donating substituents on the aromatic core stabilizes the quinone methide intermediate, thus providing a platform for payload release that can be modulated. To determine the extent to which the electronics affect the rate of release, we prepared a small library of hydroxybenzylamine linkers with varied electronics in the aromatic core, resulting in half-lives ranging from 20 to 144 h. Optimization of the linker design was carried out with mechanistic insights from density functional theory (DFT) and the in silico design of an intramolecular trapping agent through the use of DFT and intramolecular distortion energy calculations. This resulted in the development of a faster self-immolative linker with a half-life of 4.6 h. To demonstrate their effectiveness as traceless linkers for bioconjugation, reversible protein-polyethylene glycol conjugates with a model protein lysozyme were prepared, which had reduced protein activity but recovered ≥94% activity upon traceless release of the polymer. This new class of linkers with tunable release rates expands the traceless linkers toolbox for a variety of bioconjugation applications.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Proteínas
3.
Bioconjug Chem ; 33(8): 1536-1542, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35939764

RESUMO

Bioconjugation techniques for biomolecule-polymer conjugation are numerous; however, slow kinetics and steric challenges generally necessitate excess reagents or long reaction times. Organometallic transformations are known to circumvent these issues; yet, harsh reaction conditions, incompatibility in aqueous media, and substrate promiscuity often limit their use in a biological context. The work reported herein demonstrates a facile and benign organometallic Au(III) S-arylation approach that enables the synthesis of poly(ethylene glycol) monomethyl ether (mPEG)-protein conjugates with high efficiency. Isolable and bench-stable 2, 5, and 10 kDa mPEG-Au(III) reagents were synthesized via oxidative addition into terminal aryl iodide substituents installed on mPEG substrates with a (Me-DalPhos)Au(I)Cl precursor. Reaction of the isolable mPEG-Au(III) oxidative addition complexes with a cysteine thiol on a biomolecule resulted in facile and selective cysteine arylation chemistry, forging covalent S-aryl linkages and affording the mPEG-biomolecule conjugates. Notably, low polymer reagent loadings were used to achieve near quantitative conversion at room temperature in 1 min due to the rapid kinetics and high chemoselectivity of this Au-based bioconjugation approach. Therefore, this work represents an important addition to the protein-polymer conjugation chemical toolbox.


Assuntos
Cisteína , Polietilenoglicóis , Cisteína/química , Indicadores e Reagentes , Oxirredução , Polietilenoglicóis/química , Proteínas/química
4.
Biomacromolecules ; 23(8): 3383-3395, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767465

RESUMO

Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied. Investigation of acute toxicity of pSAT in mice showed that there were no adverse effects of the polymer at a high (10 mg/kg) concentration. The immune response (antipolymer antibody and cytokine production) in mice was also studied. No significant antipolymer IgG was detected for pSAT, and only a transient and low level of IgM was elicited. pSAT was also safe in terms of cytokine response. The polymer was then conjugated to a granulocyte colony stimulating factor (GCSF), a therapeutic protein that is approved by the Federal Drug Administration, in order to study the biodistribution of a pSAT conjugate. A site-selective, two-step synthesis approach was developed for efficient conjugate preparation for the biodistribution study resulting in 90% conjugation efficiency. The organ distribution of GCSF-pSAT was measured by positron emission tomography and compared to controls GCSF and GCSF-poly(ethylene glycol), which confirmed that the trehalose polymer conjugate improved the in vivo half-life of the protein by reducing renal clearance. These findings suggest that trehalose styrenyl polymers are promising for use in therapeutic protein-polymer conjugates for reduced renal clearance of the biomolecule.


Assuntos
Acetais , Trealose , Animais , Fator Estimulador de Colônias de Granulócitos , Camundongos , Polímeros/química , Proteínas/química , Distribuição Tecidual , Trealose/química
5.
Bioconjug Chem ; 31(9): 2179-2190, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32786367

RESUMO

Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.


Assuntos
Química Click , Hormônio do Crescimento Humano/análogos & derivados , Polietilenoglicóis/química , Tirosina/análogos & derivados , Azidas/química , Catálise , Cobre/química , Código Genético , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Humanos , Tirosina/genética
6.
Bioconjug Chem ; 31(6): 1651-1660, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32423203

RESUMO

Growth hormone (GH) is a peptide hormone that mediates actions through binding to a cell surface GH receptor (GHR). The GHR antagonist, B2036, combines an amino acid substitution at 120 that confers GHR antagonist activity, with eight additional amino acid substitutions. Conjugation to polyethylene glycol (PEG) increases the serum half-life of these proteins due to reduced renal clearance. Recombinant forms of GH and its antagonists are mainly produced in prokaryotic expression systems, such as E. coli. However, efficient production in E. coli is problematic, as these proteins form aggregates as inclusion bodies resulting in poor solubility. In the present study, we demonstrate that N-terminal fusion to a thioredoxin (Trx) fusion partner improves soluble expression of codon-optimized B2036 in E. coli when expressed at 18 °C. Expression, purification and PEGylation protocols were established for three GHR antagonists: B2036, B20, and G120Rv. Following purification, these antagonists inhibited the proliferation of Ba/F3-GHR cells in a concentration-dependent manner. PEGylation with amine-reactive 5 kDa methoxy PEG succinimidyl propionate yielded a heterogeneous mixture of conjugates containing four to seven PEG moieties. PEGylation significantly reduced in vitro bioactivity of the conjugates. However, substitution of lysine to arginine at amino acid residue 120 in B2036 improved the in vitro activity of the PEGylated protein when compared to unmodified PEGylated B2036. Pharmacokinetic analysis demonstrated that the circulating half-life of PEGylated B20 was 15.2 h in mice. Taken together, we describe an effective strategy to produce biologically active PEGylated human GHR antagonists.


Assuntos
Escherichia coli/metabolismo , Hormônio do Crescimento Humano/análogos & derivados , Hormônio do Crescimento Humano/antagonistas & inibidores , Substituição de Aminoácidos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Meia-Vida , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Hormônio do Crescimento Humano/farmacologia , Humanos , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Solubilidade
7.
Biomacromolecules ; 21(6): 2147-2154, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369347

RESUMO

Polymers that stabilize biomolecules are important as excipients in protein formulation. Herein, we describe a class of degradable polymers that have tunable degradation rates depending on the polymer backbone and can stabilize proteins to aggregation. Specifically, zwitterion- and trehalose-substituted polycaprolactone, polyvalerolactone, polycarbonate, and polylactide were prepared and characterized with regards to their hydrolytic degradation and ability to stabilize insulin to mechanical agitation during heat. Ring-opening polymerization (ROP) of allyl-substituted monomers was performed by using organocatalysis, resulting in well-defined alkene-substituted polymers with good control over molecular weight and dispersity. The polymers were then modified by using photocatalyzed thiol-ene reactions to install protein-stabilizing carboxybetaine and trehalose side chains. The resulting polymers were water-soluble and exhibited a wide range of half-lives, from 12 h to more than 3 months. The polymers maintained the ability to stabilize the therapeutic protein insulin from activity loss due to aggregation, demonstrating their potential as degradable excipients for protein formulation.


Assuntos
Polímeros , Trealose , Insulina , Peso Molecular , Polimerização
8.
Chem Soc Rev ; 47(24): 8998-9014, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30443654

RESUMO

Proteins are an important class of therapeutics that have advantages including high target specificity, but challenges to their use include rapid clearance and low physical stability. Conjugation of synthetic polymers is an effective approach to address the drawbacks and enhance other properties such as solubility. In this review, we present various considerations in synthesizing protein-polymer conjugates for therapeutic applications with a focus on the choice of polymer, protein, and conjugation method, as well as characterization and evaluation of the resulting conjugate in order to maximize the therapeutic potential of the protein drug.


Assuntos
Materiais Biomiméticos/química , Desenho de Fármacos , Polímeros/química , Proteínas/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Técnicas de Química Sintética/métodos , Humanos , Modelos Moleculares , Polímeros/síntese química , Polímeros/farmacologia , Proteínas/síntese química , Proteínas/farmacologia
9.
Bioconjug Chem ; 29(11): 3739-3745, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30358981

RESUMO

Poly(ethylene glycols) (PEGs) with protein-reactive end-groups are widely utilized in bioconjugation reactions. Herein, we describe the use of ring-opening metathesis polymerization (ROMP) to synthesize unsaturated protein-reactive PEG analogs. These ROMP PEGs (rPEGs) contained terminal aldehyde functionality and ranged in molecular weight from 6 to 20 kDa. The polymers were readily conjugated to free amines on the protein hen egg-white lysozyme (Lyz). Biocompatibility of the unsaturated PEGs was assessed in vitro, revealing the polymers to be nontoxic up to concentrations of at least 1 mg/mL in human dermal fibroblasts (HDFs). The resulting unsaturated rPEG-lysozyme conjugates underwent metathesis-based depolymerization, resulting in decreased molecular weight of the conjugate.


Assuntos
Aldeídos/química , Aminas/química , Muramidase/química , Polietilenoglicóis/química , Aldeídos/síntese química , Aminas/síntese química , Animais , Galinhas , Modelos Moleculares , Muramidase/síntese química , Polietilenoglicóis/síntese química , Polimerização , Proteínas/química
10.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251372

RESUMO

There is a significant need for new biodegradable protein stabilizing polymers. Herein, the synthesis of a polymer with trehalose side chains and hydrolytically degradable backbone esters and its evaluation for protein stabilization and cytotoxicity are described. Specifically, an alkene-containing parent polymer is synthesized by reversible addition-fragmentation chain transfer polymerization, and thiolated trehalose is installed using a radical-initiated thiol-ene reaction. The stabilizing properties of the polymer are investigated by thermally stressing granulocyte colony-stimulating factor (G-CSF), which is expressed and purified using a custom-designed G-CSF fusion protein with a polyhistidine-tagged maltose binding protein. The degradable polymer is shown to stabilize G-CSF to 66% after heating at 40 °C. Poly(5,6-benzo-2-methylene-1,3-dioxepane (BMDO)-co-butyl methacrylate-trehalose) is degraded and its cellular compatibility is investigated. While the polymer is noncytotoxic, cytotoxic effects are observed from the degraded products in fibroblasts and murine myeloblasts. These data provide important information for future use of BMDO-containing trehalose glycopolymers for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Polimerização , Polímeros/química , Trealose/química , Alcenos/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Leucemia Mieloide/patologia , Camundongos , Polímeros/síntese química , Polímeros/farmacologia , Compostos de Sulfidrila/química
11.
J Am Chem Soc ; 139(3): 1145-1154, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28079370

RESUMO

Many proteins, especially those used as therapeutics, are unstable to storage and shipping temperatures, leading to increased costs in research and industry. Therefore, the design and synthesis of novel stabilizers is an important area of investigation. Herein we report new degradable polymers that stabilize proteins to environmental stressors such as refrigeration and elevated temperature. Specifically, polycaprolactones with different pendant groups were synthesized and surveyed for their ability to stabilize an important therapeutic protein to storage and shipping conditions. Ring-opening polymerization (ROP) of an allyl-substituted caprolactone monomer was carried out using the organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to yield a well-defined, alkene-substituted degradable polymer, which was used as a common backbone to control for the degree of polymerization. Relevant side chains such as trehalose, lactose, glucose, carboxybetaine, and oligo(ethylene glycol) were installed via postpolymerization thiol-ene reactions. These degradable polymers were then employed as excipients for the stabilization of the therapeutic protein granulocyte colony-stimulating factor (G-CSF) against storage at 4 °C and shipping temperatures of 60 °C. The best stabilization was observed using the trehalose- and zwitterion- substituted polyesters. Both the trehalose- and carboxybetaine-substituted pCL were further investigated with regard to molecular weight dependence, and it was found that the molecular weight was minimally important for stabilization to refrigeration, but critical for G-CSF stabilization at elevated temperatures. Both high performing zwitterionic and trehalose polyesters were also degraded, and the polymers and degradation products were shown to be noncytotoxic. This work provides potential biocompatible polymers for stabilization of the important therapeutic G-CSF, as well as a general platform for the future discovery of new polymeric protein stabilizers.


Assuntos
Alcenos/química , Fator Estimulador de Colônias de Granulócitos/química , Poliésteres/química , Compostos de Sulfidrila/química , Humanos , Modelos Moleculares , Conformação Molecular , Poliésteres/síntese química , Estabilidade Proteica
12.
Bioconjug Chem ; 28(3): 836-845, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28044441

RESUMO

Biocompatible polymers such as poly(ethylene glycol) (PEG) have been successfully conjugated to therapeutic proteins to enhance their pharmacokinetics. However, many of these polymers, including PEG, only improve the in vivo lifetimes and do not protect proteins against inactivation during storage and transportation. Herein, we report a polymer with trehalose side chains (PolyProtek) that is capable of improving both the external stability and the in vivo plasma half-life of a therapeutic protein. Insulin was employed as a model biologic, and high performance liquid chromatography and dynamic light scattering confirmed that addition of trehalose glycopolymer as an excipient or covalent conjugation prevented thermal or agitation-induced aggregation of insulin. The insulin-trehalose glycopolymer conjugate also showed significantly prolonged plasma circulation time in mice, similar to the analogous insulin-PEG conjugate. The insulin-trehalose glycopolymer conjugate was active as tested by insulin tolerance tests in mice and retained bioactivity even after exposure to high temperatures. The trehalose glycopolymer was shown to be nontoxic to mice up to at least 1.6 mg/kg dosage. These results together suggest that the trehalose glycopolymer should be further explored as an alternative to PEG for long circulating protein therapeutics.


Assuntos
Hipoglicemiantes/sangue , Hipoglicemiantes/química , Insulina/análogos & derivados , Insulina/sangue , Trealose/análogos & derivados , Trealose/sangue , Animais , Feminino , Meia-Vida , Humanos , Insulina/química , Camundongos , Modelos Moleculares , Polietilenoglicóis/química , Estabilidade Proteica , Suínos , Trealose/química
13.
Acc Chem Res ; 49(9): 1777-85, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27588677

RESUMO

Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with rationally designed and functional biological properties for conjugate preparation. Specifically, two families of saccharide-inspired polymers were developed for stabilization and activation of therapeutic biomolecules. A series of polymers with trehalose side-chains and vinyl backbones were prepared and used to stabilize proteins against heat and lyophilization stress as both conjugates and additives. These materials, which combine properties of osmolytes with nonionic surfactants, have significant potential for in vivo therapeutic use. Additionally, polymers that mimic the structure of the naturally occurring polysaccharide heparin were prepared. These polymers contained negatively charged sulfonate groups and imparted stabilization to a heparin-binding growth factor after conjugation. A screen of other sulfonated polymers led to the development of a polymer with improved heparin mimesis, enhancing both stability and activity of the protein to which it was attached. Chemical improvements over the past decade have enabled the preparation of a diverse set of protein-polymer conjugates by controlled polymerization techniques. Now, the field should thoroughly explore and expand both the range of polymer structures and also the applications available to protein-polymer conjugates. As we move beyond medicine toward broader applications, increased collaboration and interdisciplinary work will result in the further development of this exciting field.


Assuntos
Polímeros/síntese química , Proteínas/síntese química , Animais , Linhagem Celular , Humanos , Camundongos , Polimerização , Polímeros/química , Polissacarídeos/síntese química , Polissacarídeos/química , Estabilidade Proteica , Proteínas/química , Solubilidade
14.
J Am Chem Soc ; 138(22): 6952-5, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27186856

RESUMO

We report a discovery that perfunctionalized icosahedral dodecaborate clusters of the type B12(OCH2Ar)12 (Ar = Ph or C6F5) can undergo photo-excitation with visible light, leading to a new class of metal-free photooxidants. Excitation in these species occurs as a result of the charge transfer between low-lying orbitals located on the benzyl substituents and an unoccupied orbital delocalized throughout the boron cluster core. Here we show how these species, photo-excited with a benchtop blue LED source, can exhibit excited-state reduction potentials as high as 3 V and can participate in electron-transfer processes with a broad range of styrene monomers, initiating their polymerization. Initiation is observed in cases of both electron-rich and electron-deficient styrene monomers at cluster loadings as low as 0.005 mol%. Furthermore, photo-excitation of B12(OCH2C6F5)12 in the presence of a less activated olefin such as isobutylene results in the production of highly branched poly(isobutylene). This work introduces a new class of air-stable, metal-free photo-redox reagents capable of mediating chemical transformations.


Assuntos
Compostos de Boro/química , Luz , Oxidantes/química , Polienos/química , Polímeros/química , Compostos de Boro/efeitos da radiação , Transporte de Elétrons , Modelos Moleculares , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Polimerização
15.
Langmuir ; 32(16): 4043-51, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27078573

RESUMO

Electron beam (e-beam) lithography was employed to prepare one protein immobilized hydrogel encapsulated inside another by first fabricating protein-reactive hydrogels of orthogonal reactivity and subsequently conjugating the biomolecules. Exposure of thin films of eight arm star poly(ethylene glycol) (PEG) functionalized with biotin (Biotin-PEG), alkyne (Alkyne-PEG) or aminooxy (AO-PEG) end-groups to e-beam radiation resulted in cross-linked hydrogels with the respective functionality. It was determined via confocal microscopy that a nominal size exclusion effect exists for streptavidin immobilized on Biotin-PEG hydrogels of feature sizes ranging from 5 to 40 µm. AO-PEG was subsequently patterned as an encapsulated core inside a contiguous outer shell of Biotin-PEG. Similarly, Alkyne-PEG was patterned as a core inside an AO-PEG shell. The hydrogel reactive end-groups were conjugated to dyes or proteins of complementary reactivity, and the three-dimensional (3-D) spatial orientation was determined for both configurations using confocal microscopy. The enzyme glucose oxidase (GOX) was immobilized in the core of the encapsulated Alkyne-PEG core/ AO-PEG shell architecture, and horseradish peroxidase (HRP) was conjugated to the shell periphery. Bioactivity for the HRP-GOX enzyme pair was observed in this encapsulated configuration by demonstrating that the enzyme pair was capable of enzyme cascade reactions.


Assuntos
Elétrons , Peroxidase do Rábano Silvestre/metabolismo , Hidrogéis/química , Polietilenoglicóis/química , Impressão , Alcinos/química , Biotina/química , Cápsulas , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo
16.
Biomacromolecules ; 17(11): 3417-3440, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739666

RESUMO

Heparin is a naturally occurring, highly sulfated polysaccharide that plays a critical role in a range of different biological processes. Therapeutically, it is mostly commonly used as an injectable solution as an anticoagulant for a variety of indications, although it has also been employed in other forms such as coatings on various biomedical devices. Due to the diverse functions of this polysaccharide in the body, including anticoagulation, tissue regeneration, anti-inflammation, and protein stabilization, and drawbacks of its use, analogous heparin-mimicking materials are also widely studied for therapeutic applications. This review focuses on one type of these materials, namely, synthetic heparin-mimicking polymers. Utilization of these polymers provides significant benefits compared to heparin, including enhancing therapeutic efficacy and reducing side effects as a result of fine-tuning heparin-binding motifs and other molecular characteristics. The major types of the various polymers are summarized, as well as their applications. Because development of a broader range of heparin-mimicking materials would further expand the impact of these polymers in the treatment of various diseases, future directions are also discussed.


Assuntos
Anticoagulantes/química , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Heparina/química , Polímeros/química , Anticoagulantes/síntese química , Anticoagulantes/uso terapêutico , Heparina/síntese química , Heparina/uso terapêutico , Humanos , Polímeros/síntese química , Polímeros/uso terapêutico
17.
Biomacromolecules ; 17(10): 3386-3395, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27580376

RESUMO

Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing.


Assuntos
Fator 2 de Crescimento de Fibroblastos/química , Heparitina Sulfato/química , Metacrilatos/química , Polietilenoglicóis/química , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/farmacologia , Heparitina Sulfato/farmacologia , Humanos , Metacrilatos/farmacologia , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Regeneração/efeitos dos fármacos , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia , Cicatrização/efeitos dos fármacos
18.
Biomacromolecules ; 16(9): 2684-92, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26212474

RESUMO

Heparin is a highly sulfated polysaccharide and is useful because of its diverse biological functions. However, because of batch-to-batch variability and other factors, there is significant interest in preparing biomimetics of heparin. To identify polymeric heparin mimetics, a cell-based screening assay was developed in cells that express fibroblast growth factor receptors (FGFRs) but not heparan sulfate proteoglycans. Various sulfated and sulfonated polymers were screened, and poly(vinyl sulfonate) (pVS) was identified as the strongest heparin-mimicking polymer in its ability to enhance binding of basic fibroblast growth factor (bFGF) to FGFR. The results were confirmed by an ELISA-based receptor-binding assay. Different molecular weights of pVS polymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were able to facilitate dimerization of FGFRs leading to cell proliferation in FGFR-expressing cells, and no size dependence was observed. The data showed that pVS is comparable to heparin in these assays. In addition, pVS was not cytotoxic to fibroblast cells up to at least 1 mg/mL. Together this data indicates that pVS should be explored further as a replacement for heparin.


Assuntos
Materiais Biomiméticos , Fator 2 de Crescimento de Fibroblastos , Polivinil , Ácidos Sulfônicos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/farmacologia , Heparina/química , Humanos , Polivinil/química , Polivinil/farmacologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia
19.
Biomacromolecules ; 16(7): 2101-8, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26061010

RESUMO

A shortage of available organ donors has created a need for engineered tissues. In this context, polymer-based hydrogels that break down inside the body are often used as constructs for growth factors and cells. Herein, we report imine cross-linked gels where degradation is controllable by the introduction of mixed imine cross-links. Specifically, hydrazide-functionalized poly(ethylene glycol) (PEG) reacts with aldehyde-functionalized PEG (PEG-CHO) to form hydrazone linked hydrogels that degrade quickly in media. The time to degradation can be controlled by changing the structure of the hydrazide group or by introducing hydroxylamines to form nonreversible oxime linkages. Hydrogels containing adipohydrazide-functionalized PEG (PEG-ADH) and PEG-CHO were found to degrade more rapidly than gels formed from carbodihydrazide-functionalized PEG (PEG-CDH). Incorporating oxime linkages via aminooxy-functionalized PEG (PEG-AO) into the hydrazone cross-linked gels further stabilized the hydrogels. This imine cross-linking approach should be useful for modulating the degradation characteristics of 3D cell culture supports for controlled cell release.


Assuntos
Hidrogéis/química , Iminas/química , Células-Tronco Mesenquimais/citologia , Animais , Sobrevivência Celular , Células Cultivadas , Hidrazinas/química , Camundongos , Polietilenoglicóis/química , Engenharia Tecidual
20.
J Am Chem Soc ; 136(41): 14323-32, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25216406

RESUMO

Protein-polymer conjugates are widely used as therapeutics. All Food and Drug Administration (FDA)-approved protein conjugates are covalently linked to poly(ethylene glycol) (PEG). These PEGylated drugs have longer half-lives in the bloodstream, leading to less frequent dosing, which is a significant advantage for patients. However, there are some potential drawbacks to PEG that are driving the development of alternatives. Polymers that display enhanced pharmacokinetic properties along with additional advantages such as improved stability or degradability will be important to advance the field of protein therapeutics. This perspective presents a summary of protein-PEG conjugates for therapeutic use and alternative technologies in various stages of development as well as suggestions for future directions. Established methods of producing protein-PEG conjugates and new approaches utilizing controlled radical polymerization are also covered.


Assuntos
Polietilenoglicóis/uso terapêutico , Proteínas/metabolismo , Modelos Moleculares , Estrutura Molecular , Polietilenoglicóis/química , Polimerização , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA