RESUMO
Background: Periodontitis is associated with an increased risk of ischemic stroke, but the mechanisms underlying this association remain unclear. Objectives: Our objective was to determine whether Porphyromonas gingivalis (Pg), a periodontal bacterium, could be detected within thrombus aspirates, modify thrombus composition, and endovascular therapy responses. Methods: The presence of Pg gingipain in 175 consecutive thrombi from patients with large vessel occlusion stroke enrolled in the multicenter research cohort compoCLOT was investigated by immunostaining. Thrombus blood cell composition according to gingipain status was analyzed in a subset of 63 patients. Results: Pg gingipain immunostaining was positive in 33.7% of thrombi (95% CI, 26.7%-40.8%). The percentage of near to complete reperfusion (modified Thrombolysis in Cerebral Infarction Score 2c/3) at the end of the procedure was lower in the Pgpos group than the Pgneg group (39.0% vs 57.8% respectively; adjusted odds ratio, 0.38; 95% CI, 0.19-0.77). At 3 months, 35.7% of patients in the Pgpos group had a favorable neurological outcome vs 49.5% in the Pgneg group (odds ratio, 0.65; 95% CI, 0.30-1.40). Quantitative analysis of a subset of 63 thrombi showed that neutrophil elastase content was significantly (P < .05) higher in Pgpos thrombi than in Pgneg thrombi. Conclusion: Our results indicate that intrathrombus Pg gingipain is associated with increased neutrophil content and resistance to endovascular therapy.
RESUMO
Atherothrombosis, leading to stroke and myocardial infarction, is responsible for most of the deaths in the world. An increased risk of atherothrombotic vascular events has been reported in patients with periodontitis. Periodontitis is a chronic multifactorial inflammatory disease, which involves a dysbiotic microbiota, and leads to a progressive destruction of the tooth-supporting apparatus. Transcient periodontal pathogen blood translocation, mainly bacteremia, has been associated with the severity of gingival inflammation. The identification of periodontal bacteria within atherothrombotic plaques is challenging and unpredictable. This review aims to summarize existing molecular technics for identifying periodontal microbiota in human atherothrombotic samples. A secondary objective is to describe a protocol for the identification of Porphyromonas gingivalis from highly calcified, atherothrombotic human samples that is based on our experience in translational cardiovascular research. Compared to direct real-time PCR, our protocol based on nested PCR has increased the detection of Porphyromonas gingivalis by 22.2% with good specificity.
RESUMO
Periodontal diseases are multifactorial inflammatory diseases, caused by a bacterial biofilm involving both innate and adaptative immunity, characterized by the destruction of tooth-supporting tissues. In the context of periodontitis, the spread of weak pathogenic bacteria into the bloodstream has been described. These bacteria will preferentially localize to existing clot within the circulation. Atherothrombosis of the carotid arteries is a local pathology and a common cause of cerebral infarction. Intraplaque hemorrhages render the lesion more prone to clinical complications such as stroke. The main objective of this study is to explore the biological relationship between carotid intraplaque hemorrhage and periodontal diseases. This study included consecutive patients with symptomatic or asymptomatic carotid stenosis, admitted for endarterectomy surgical procedure (n=41). In conditioned media of the carotid samples collected, markers of neutrophil activation (myeloperoxidase or MPO, DNA-MPO complexes) and hemoglobin were quantified. To investigate the presence of DNA from periodontal bacteria in atherosclerotic plaque, PCR analysis using specific primers was performed. Our preliminary results indicate an association between neutrophil activation and intraplaque hemorrhages, reflected by the release of MPO (p<0,01) and MPO-DNA complexes (p<0,05). Presence of DNA from periodontitis-associated bacteria was found in 32/41 (78%) atheromatous plaque samples. More specifically, DNA from Pg, Tf, Pi, Aa was found in 46%, 24%, 34% and 68% of the samples, respectively. Hemoglobin levels were higher in conditioned media in carotid samples where the bacteria were found, but this was not statistically significant. Our data confirm the relationship between intraplaque hemorrhage and neutrophil activation. In addition, the presence of periodontal bacteria DNA in carotid atheromatous plaque, may contribute to this activation. Further analysis is needed to fully explore the raw data and specimens.