Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 81(18): 1719-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26287766

RESUMO

This works reports the purification of bromelain extracted from Ananas comosus industrial residues by ethanol purification, its partial characterization from the crude extract as well as the ethanol purified enzyme, and its application onto poly(N-isopropylacrylamide)-co-acrylamide hydrogels. Bromelain was recovered within the 30-70 % ethanol fraction, which achieved a purification factor of 3.12-fold, and yielded more than 90 % of its initial activity. The resulting purified bromelain contained more than 360 U · mg(-1), with a maximum working temperature of 60 °C and pH of 8.0. Poly(N-isopropylacrylamide)-co-acrylamide hydrogels presented a swelling rate of 125 %, which was capable of loading 56 % of bromelain from the solution, and was able to release up to 91 % of the retained bromelain. Ethanol precipitation is suitable for bromelain recovery and application onto poly(N-isopropylacrylamide)-co-acrylamide hydrogels based on its processing time and the applied ethanol prices.


Assuntos
Acrilamida , Resinas Acrílicas , Ananas/química , Bromelaínas/administração & dosagem , Preparações de Ação Retardada , Hidrogéis , Bromelaínas/química , Bromelaínas/isolamento & purificação , Hidrogéis/química
2.
Biomater Sci ; 9(6): 2183-2196, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33502392

RESUMO

We generated stable amphiphilic copolymer-based polymeric micelles (PMs) with temperature-responsive properties utilizing Pluronic® L35 and a variety of ionic liquids (ILs) to generate different aqueous two-phase micellar systems (ATPMSs). The partitioning of the hydrophobic model compound curcumin (CCM) into the PM-rich phase and the drug delivery capabilities of the PMs were investigated. ATPMSs formed using more hydrophobic ILs (i.e., [Ch][Hex] ≈ [Ch][But] > [Ch][Pro] > [Ch][Ac] ≈ [Ch]Cl) were the most effective in partitioning (KCCM) and recovering (RECRich) CCM into the PM-rich phase (15.2 < KCCM < 22.0 and 90% < RECRich < 95%, respectively). Moreover, using 1.2 M [Ch][But] and 0.2 M [Ch][Hex] ILs yielded higher encapsulation efficiency (EE) (94.1 and 96.0%, respectively) and drug loading (DL) capacity (14.8 and 16.2%, respectively), together with an increase in the average hydrodynamic diameter of the PMs (DH) (42.5 and 45.6 nm, respectively). The CCM-PM formulations were stable at 4.0, 25.0, and 37.0 °C and the release of CCM was faster with the less hydrophobic ILs (i.e., [Ch]Cl and [Ch][Ac]). Furthermore, due to the lower critical solution temperature properties of Pluronic® L35, the PMs exhibit temperature responsiveness at 37.0 °C. In vitro cytotoxicity assays were also performed to determine the potency of CCM-PM formulations, and a 1.8-fold decrease in IC50 values was observed between the CCM-PMs/[Ch][Hex] and CCM-PMs/[Ch]Cl formulations for PC3 cells. The lower IC50 value for the [Ch][Hex] version corresponded to a greater potency compared to the [Ch]Cl version, since a lower concentration of CCM was required to achieve the same therapeutic effect. The ATPMSs investigated in this study serve as a novel platform for Pluronic® L35/PBS buffer (pH 7.4) + IL-based ATPMS development. The unique properties reported here may be useful in applications such as controlled-release drug delivery systems (DDS), encapsulation, and bioseparations.


Assuntos
Líquidos Iônicos , Micelas , Portadores de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Polímeros
3.
J Pharm Pharm Sci ; 10(3): 388-404, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17727802

RESUMO

PURPOSE: Endotoxins, also called lipopolysaccharides (LPS), are major contaminants found in commercially available proteins or biologically active substances, which often complicate study of the biological effects of the main ingredient. The presence of small amounts of endotoxin in recombinant protein preparations can cause side effects in host organism such as endotoxin shock, tissue injury, and even death. Due to these reactions, it is essential to remove endotoxins from drugs, injectables, and other biological and pharmaceutical products. An overview of this subject is provided by this article. METHODS: An extensive review of literature with regard to methods for removal of endotoxin from biotechnological preparations was carried out. RESULTS: A short history of endotoxin is presented first. This is followed by a review of chemical and physical properties of endotoxin and its pathophysiological effects when the body is exposed to LPS excessively or systemically. The techniques of endotoxin determination and interaction of endotoxin with proteins is also presented, taking into consideration the established techniques as well as the state of the art technology in this field. A review of techniques of endotoxin removal from biotechnological preparations is described, emphasizing how endotoxin removal can be carried out in an economical way based on a number of processes discussed in the literature (e.g., adsorption, two-phase partitioning, ultrafiltration and chromatography). Different methods are mentioned with relatively high protein recoveries; however, special attention is given to two-phase aqueous micellar systems, which are valuable tools for endotoxin removal from pharmaceutical proteins on a small scale because they provide a mild environment for biological materials. CONCLUSIONS: Efficient and cost-effective removal of endotoxins from pharmaceutical and biotechnology preparations is challenging. Despite development of novel methods, such as the two-phase aqueous micellar systems, in recent years, more research is needed in this field.


Assuntos
Produtos Biológicos/normas , Contaminação de Medicamentos , Endotoxinas , Cromatografia Líquida/métodos , Análise Custo-Benefício , Endotoxinas/química , Endotoxinas/história , Endotoxinas/toxicidade , História do Século XIX , História do Século XX , Micelas , Octoxinol , Polietilenoglicóis , Controle de Qualidade , Ultrafiltração
4.
Biotechnol Prog ; 26(1): 252-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19856402

RESUMO

Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP.


Assuntos
Proteínas de Fluorescência Verde/química , Polietilenoglicóis/química , Temperatura , Peso Molecular , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA