Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Internet Res ; 22(11): e17150, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33245280

RESUMO

BACKGROUND: Three-dimensional scans are increasingly used to quantify biological topographical changes and clinical health outcomes. Traditionally, the use of 3D scans has been limited to specialized centers owing to the high cost of the scanning equipment and the necessity for complex analysis software. Technological advances have made cheaper, more accessible methods of data capture and analysis available in the field of dentistry, potentially facilitating a primary care system to quantify disease progression. However, this system has yet to be compared with previous high-precision methods in university hospital settings. OBJECTIVE: The aim of this study was to compare a dental primary care method of data capture (intraoral scanner) with a precision hospital-based method (laser profilometer) in addition to comparing open source and commercial software available for data analysis. METHODS: Longitudinal dental wear data from 30 patients were analyzed using a two-factor factorial experimental design. Bimaxillary intraoral digital scans (TrueDefinition, 3M, UK) and conventional silicone impressions, poured in type-4 dental stone, were made at both baseline and follow-up appointments (mean 36 months, SD 10.9). Stone models were scanned using precision laser profilometry (Taicaan, Southampton, UK). Three-dimensional changes in both forms of digital scans of the first molars (n=76) were quantitatively analyzed using the engineering software Geomagic Control (3D Systems, Germany) and freeware WearCompare (Leeds Digital Dentistry, UK). Volume change (mm3) was the primary measurement outcome. The maximum point loss (µm) and the average profile loss (µm) were also recorded. Data were paired and skewed, and were therefore compared using Wilcoxon signed-rank tests with Bonferroni correction. RESULTS: The median (IQR) volume change for Geomagic using profilometry and using the intraoral scan was -0.37 mm3 (-3.75-2.30) and +0.51 mm3 (-2.17-4.26), respectively (P<.001). Using WearCompare, the median (IQR) volume change for profilometry and intraoral scanning was -1.21 mm3 (-3.48-0.56) and -0.39 mm3 (-3.96-2.76), respectively (P=.04). WearCompare detected significantly greater volume loss than Geomagic regardless of scanner type. No differences were observed between groups with respect to the maximum point loss or average profile loss. CONCLUSIONS: As expected, the method of data capture, software used, and measurement metric all significantly influenced the measurement outcome. However, when appropriate analysis was used, the primary care system was able to quantify the degree of change and can be recommended depending on the accuracy needed to diagnose a condition. Lower-resolution scanners may underestimate complex changes when measuring at the micron level.


Assuntos
Desenho Assistido por Computador/instrumentação , Imageamento Tridimensional/métodos , Boca/patologia , Adulto , Feminino , Alemanha , Humanos , Estudos Longitudinais , Masculino , Projetos de Pesquisa , Software
2.
Nanomedicine ; 13(3): 921-932, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27979747

RESUMO

HPV subtypes (16, 18) are associated with the development of cervical cancer, with oncoproteins E6 and E7 responsible for pathogenesis. The goal of this study was to evaluate our 'smart system' technology platform for DNA vaccination against cervical cancer. The vaccination platform brings together two main components; a peptide RALA which condenses DNA into cationic nanoparticles (NPs), and a polymeric polyvinylpyrrolidone (PVP) microneedle (MN) patch for cutaneous delivery of the loaded NPs. RALA condensed E6/E7 DNA into NPs not exceeding 100nm in diameter, and afforded the DNA protection from degradation in PVP. Sera from mice vaccinated with MN/RALA-E6/E7 were richer in E6/E7-specific IgGs, displayed a greater T-cell-mediated TC-1 cytotoxicity and contained more IFN-γ than sera from mice that received NPs intramuscularly. More importantly, MN/RALA-E6/E7 delayed TC-1 tumor initiation in a prophylactic model, and slowed tumor growth in a therapeutic model of vaccination, and was more potent than intramuscular vaccination.


Assuntos
Vacinas Anticâncer/administração & dosagem , Técnicas de Transferência de Genes/instrumentação , Oligopeptídeos/química , Infecções por Papillomavirus/prevenção & controle , Povidona/química , Neoplasias do Colo do Útero/prevenção & controle , Vacinação/instrumentação , Vacinas de DNA/administração & dosagem , Administração Cutânea , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular , Colo do Útero/imunologia , Colo do Útero/patologia , Colo do Útero/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/imunologia , Humanos , Imunidade Humoral , Camundongos Endogâmicos C57BL , Agulhas , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico
3.
Mol Pharm ; 13(4): 1217-28, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26954700

RESUMO

Bisphosphonates (BPs) are a class of bone resorptive drug with a high affinity for the hydroxyapatite structure of bone matrices that are used for the treatment of osteoporosis. However, clinical application is limited by a common toxicity, BP-related osteonecrosis of the jaw. There is emerging evidence that BPs possess anticancer potential, but exploitation of these antiproliferative properties is limited by their toxicities. We previously reported the utility of a cationic amphipathic fusogenic peptide, RALA, to traffic anionic nucleic acids into various cell types in the form of cationic nanoparticles. We hypothesized that complexation with RALA could similarly be used to conceal a BP's hydroxyapatite affinity, and to enhance bioavailability, thereby improving anticancer efficacy. Incubation of RALA with alendronate, etidronate, risedronate, or zoledronate provoked spontaneous electrostatic formation of cationic nanoparticles that did not exceed 100 nm in diameter and that were stable over a range of temperatures and for up to 6 h. The nanoparticles demonstrated a pH responsiveness, possibly indicative of a conformational change, that could facilitate release of the BP cargo in the endosomal environment. RALA/BP nanoparticles were more potent anticancer agents than their free BP counterparts in assays investigating the viability of PC3 prostate cancer and MDA-MB-231 breast cancer cells. Moreover, RALA complexation potentiated the tumor growth delay activity of alendronate in a PC3 xenograft model of prostate cancer. Taken together, these findings further validate the use of BPs as repurposed anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Difosfonatos/química , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Alendronato/química , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Humanos , Imidazóis/química , Imidazóis/farmacologia , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
4.
Healthcare (Basel) ; 6(3)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986398

RESUMO

Current research around effective recruitment strategies for clinical trials of dietary obesity treatments have largely focused on younger adults, and thus may not be applicable to older populations. The TEMPO Diet Trial (Type of Energy Manipulation for Promoting optimal metabolic health and body composition in Obesity) is a randomised controlled trial comparing the long-term effects of fast versus slow weight loss on body composition and cardio-metabolic health in postmenopausal women with obesity. This paper addresses the recruitment strategies used to enrol participants into this trial and evaluates their relative effectiveness. 101 post-menopausal women aged 45⁻65 years, with a body mass index of 30⁻40 kg/m² were recruited and randomised to either fast or slow weight loss. Multiple strategies were used to recruit participants. The total time cost (labour) and monetary cost per randomised participant from each recruitment strategy was estimated, with lower values indicating greater cost-effectiveness and higher values indicating poorer cost-effectiveness. The most cost-effective recruitment strategy was word of mouth, followed (at equal second place) by free publicity on TV and radio, and printed advertorials, albeit these avenues only yielded 26/101 participants. Intermediate cost-effective recruitment strategies were flyer distribution at community events, hospitals and a local tertiary education campus, internet-based strategies, and clinical trial databases and intranets, which recruited a further 40/101 participants. The least cost-effective recruitment strategy was flyer distribution to local health service centres and residential mailboxes, and referrals from healthcare professionals were not effective. Recruiting for clinical trials involving postmenopausal women could benefit from a combination of recruitment strategies, with an emphasis on word of mouth and free publicity via radio, TV, and print media, as well as strategic placement of flyers, supplemented with internet-based strategies, databases and intranets if a greater yield of participants is needed.

5.
Eur J Pharm Biopharm ; 127: 288-297, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29510205

RESUMO

Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 µg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer.


Assuntos
DNA/administração & dosagem , DNA/química , Peptídeos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Vacinas de DNA/administração & dosagem , Vacinas de DNA/química , Animais , Plásticos Biodegradáveis/química , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Feminino , Técnicas de Transferência de Genes , Terapia Genética/métodos , Injeções Intramusculares/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções/métodos , Nanopartículas/química , Agulhas , Plasmídeos/administração & dosagem , Pele/metabolismo , Suínos , Transfecção/métodos , Vacinação/métodos
6.
Hum Vaccin Immunother ; 13(1): 50-62, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27846370

RESUMO

DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Agulhas , Polímeros , Vacinação/instrumentação , Vacinas de DNA/administração & dosagem , Animais , Masculino , Camundongos Endogâmicos C57BL , Vacinas de DNA/farmacocinética
7.
Curr Opin Biotechnol ; 16(5): 577-83, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16154338

RESUMO

Biologically mediated processes seem promising for energy conversion, in particular for the conversion of lignocellulosic biomass into fuels. Although processes featuring a step dedicated to the production of cellulase enzymes have been the focus of most research efforts to date, consolidated bioprocessing (CBP)--featuring cellulase production, cellulose hydrolysis and fermentation in one step--is an alternative approach with outstanding potential. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring cellulolytic microorganisms to improve product-related properties, such as yield and titer, and engineering non-cellulolytic organisms that exhibit high product yields and titers to express a heterologous cellulase system enabling cellulose utilization. Recent studies of the fundamental principles of microbial cellulose utilization support the feasibility of CBP.


Assuntos
Biomassa , Biotecnologia/métodos , Celulose/metabolismo , Animais , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Biotecnologia/economia , Biotecnologia/tendências , Celulases/genética , Celulases/metabolismo , Etanol/economia , Etanol/metabolismo , Fermentação , Expressão Gênica/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Hidrólise , Lignina/metabolismo
8.
Int J Pharm ; 500(1-2): 144-53, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26802497

RESUMO

Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles <100 nm and were capable of transfecting PC-3 metastatic prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine(®) 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor.


Assuntos
Biopolímeros/administração & dosagem , DNA/administração & dosagem , Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Oligopeptídeos/metabolismo , Biopolímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Nanopartículas/química , Plasmídeos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
9.
J Control Release ; 226: 238-47, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26883753

RESUMO

Microneedle technology provides the opportunity for the delivery of DNA therapeutics by a non-invasive, patient acceptable route. To deliver DNA successfully requires consideration of both extra and intracellular biological barriers. In this study we present a novel two tier platform; i) a peptide delivery system, termed RALA, that is able to wrap the DNA into nanoparticles, protect the DNA from degradation, enter cells, disrupt endosomes and deliver the DNA to the nucleus of cells ii) a microneedle (MN) patch that will house the nanoparticles within the polymer matrix, breach the skin's stratum corneum barrier and dissolve upon contact with skin interstitial fluid thus releasing the nanoparticles into the skin. Our data demonstrates that the RALA is essential for preventing DNA degradation within the poly(vinylpyrrolidone) (PVP) polymer matrix. In fact the RALA/DNA nanoparticles (NPs) retained functionality when in the MN arrays after 28days and over a range of temperatures. Furthermore the physical strength and structure of the MNs was not compromised when loaded with the NPs. Finally we demonstrated the effectiveness of our MN-NP platform in vitro and in vivo, with systemic gene expression in highly vascularised regions. Taken together this 'smart-system' technology could be applied to a wide range of genetic therapies.


Assuntos
Peptídeos Penetradores de Células/química , DNA/administração & dosagem , Técnicas de Transferência de Genes/instrumentação , Nanopartículas/química , Agulhas , Plasmídeos/administração & dosagem , Administração Cutânea , Animais , Linhagem Celular , Peptídeos Penetradores de Células/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Povidona/química , Povidona/metabolismo , Pele/metabolismo , Suínos
10.
Curr Opin Biotechnol ; 23(3): 396-405, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22176748

RESUMO

Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems.


Assuntos
Biocombustíveis , Biomassa , Lignina/metabolismo , Bactérias/genética , Bactérias/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Humanos , Microalgas/metabolismo , Plantas/metabolismo , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA