Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(2): 249-259, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36357687

RESUMO

While mechanical stimulation is known to regulate a wide range of biological processes at the cellular and tissue levels, its medical use for tissue regeneration and rehabilitation has been limited by the availability of suitable devices. Here we present a mechanically active gel-elastomer-nitinol tissue adhesive (MAGENTA) that generates and delivers muscle-contraction-mimicking stimulation to a target tissue with programmed strength and frequency. MAGENTA consists of a shape memory alloy spring that enables actuation up to 40% strain, and an adhesive that efficiently transmits the actuation to the underlying tissue. MAGENTA activates mechanosensing pathways involving yes-associated protein and myocardin-related transcription factor A, and increases the rate of muscle protein synthesis. Disuse muscles treated with MAGENTA exhibit greater size and weight, and generate higher forces compared to untreated muscles, demonstrating the prevention of atrophy. MAGENTA thus has promising applications in the treatment of muscle atrophy and regenerative medicine.


Assuntos
Músculo Esquelético , Adesivos Teciduais , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Adesivos Teciduais/metabolismo , Corantes de Rosanilina/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Contração Muscular
2.
Biomaterials ; 269: 120643, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434713

RESUMO

Traditional bone fixation devices made from inert metal alloys provide structural strength for bone repair but are limited in their ability to actively promote bone healing. Although several naturally derived bioactive materials have been developed to promote ossification in bone defects, it is difficult to translate small-scale benchtop fabrication of these materials to high-output manufacturing. Standard industrial molding processes, such as injection and compression molding, have typically been limited to use with synthetic polymers since most biopolymers cannot withstand the harsh processing conditions involved in these techniques. Here we demonstrate injection and compression molding of a bioceramic composite comprised of hydroxyapatite (HA) and silk fibroin (SF) from Bombyx mori silkworm cocoons. Both the molding behavior of the HA-SF slurry and final scaffold mechanics can be controlled by modulating SF protein molecular weight, SF content, and powder-to-liquid ratio. HA-SF composites with up to 20 weight percent SF were successfully molded into stable three-dimensional structures using high pressure molding techniques. The unique durability of silk fibroin enables application of common molding techniques to fabricate composite silk-ceramic scaffolds. This work demonstrates the potential to move bone tissue engineering one step closer to large-scale manufacturing of natural protein-based resorbable bone grafts and fixation devices.


Assuntos
Bombyx , Fibroínas , Animais , Materiais Biocompatíveis , Durapatita , Seda , Engenharia Tecidual , Alicerces Teciduais
3.
Ann Biomed Eng ; 43(3): 657-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25537688

RESUMO

Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.


Assuntos
Biopolímeros , Alicerces Teciduais , Animais , Regeneração Óssea , Transplante de Córnea , Coração/fisiologia , Humanos , Músculo Esquelético/fisiologia , Regeneração Nervosa , Medicina Regenerativa
4.
Biomaterials ; 35(25): 6941-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24881027

RESUMO

Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs.


Assuntos
Durapatita/química , Seda/química , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Bombyx , Células da Medula Óssea , Substitutos Ósseos , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cerâmica/química , Humanos , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Porosidade , Engenharia Tecidual/métodos , Suporte de Carga , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA