Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Chem Rev ; 122(21): 16294-16328, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36179355

RESUMO

The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.


Assuntos
Polímeros , Biologia Sintética , Membranas , Proteínas
2.
Nano Lett ; 22(13): 5077-5085, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771654

RESUMO

Domain separation is crucial for proper cellular function and numerous biomedical technologies, especially artificial cells. While phase separation in hybrid membranes containing lipids and copolymers is well-known, the membranes' overall stability, limited by the lipid part, is hindering the technological applications. Here, we introduce a fully synthetic planar membrane undergoing phase separation into domains embedded within a continuous phase. The mono- and bilayer membranes are composed of two amphiphilic diblock copolymers (PEO45-b-PEHOx20 and PMOXA10-b-PDMS25) with distinct properties and mixed at various concentrations. The molar ratio of the copolymers in the mixture and the nature of the solid support were the key parameters inducing nanoscale phase separation of the planar membranes. The size of the domains and resulting morphology of the nanopatterned surfaces were tailored by adjusting the molar ratios of the copolymers and transfer conditions. Our approach opens new avenues for the development of biomimetic planar membranes with a nanoscale texture.


Assuntos
Células Artificiais , Polímeros , Membranas Artificiais
3.
Langmuir ; 38(21): 6561-6570, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35580858

RESUMO

Combining amphiphilic block copolymers and phospholipids opens new opportunities for the preparation of artificial membranes. The chemical versatility and mechanical robustness of polymers together with the fluidity and biocompatibility of lipids afford hybrid membranes with unique properties that are of great interest in the field of bioengineering. Owing to its straightforwardness, the solvent-assisted method (SA) is particularly attractive for obtaining solid-supported membranes. While the SA method was first developed for lipids and very recently extended to amphiphilic block copolymers, its potential to develop hybrid membranes has not yet been explored. Here, we tailor the SA method to prepare solid-supported polymer-lipid hybrid membranes by combining a small library of amphiphilic diblock copolymers poly(dimethyl siloxane)-poly(2-methyl-2-oxazoline) and poly(butylene oxide)-block-poly(glycidol) with phospholipids commonly found in cell membranes including 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl). The optimization of the conditions under which the SA method was applied allowed for the formation of hybrid polymer-lipid solid-supported membranes. The real-time formation and morphology of these hybrid membranes were evaluated using a combination of quartz crystal microbalance and atomic force microscopy. Depending on the type of polymer-lipid combination, significant differences in membrane coverage, formation of domains, and quality of membranes were obtained. The use of the SA method for a rapid and controlled formation of solid-supported hybrid membranes provides the basis for developing customized artificial hybrid membranes.


Assuntos
Membranas Artificiais , Polímeros , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Fosfolipídeos/química , Polímeros/química , Solventes
4.
Biomacromolecules ; 22(7): 3005-3016, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34105950

RESUMO

Artificial membranes, as materials with biomimetic properties, can be applied in various fields, such as drug screening or bio-sensing. The solvent-assisted method (SA) represents a straightforward method to prepare lipid solid-supported membranes. It overcomes the main limitations of established membrane preparation methods, such as Langmuir-Blodgett (LB) or vesicle fusion. However, it has not yet been applied to create artificial membranes based on amphiphilic block copolymers, despite their enhanced mechanical stability compared to lipid-based membranes and bio-compatible properties. Here, we applied the SA method on different amphiphilic di- and triblock poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) copolymers and optimized the conditions to prepare artificial membranes on a solid support. The real-time membrane formation, the morphology, and the mechanical properties have been evaluated by a combination of atomic force microscopy and quartz crystal microbalance. Then, selected biomolecules including complementary DNA strands and an artificial deallylase metalloenzyme (ADAse) were incorporated into these membranes relying on the biotin-streptavidin technology. DNA strands served to establish the capability of these synthetic membranes to interact with biomolecules by preserving their correct conformation. The catalytic activity of the ADAse following its membrane anchoring induced the functionality of the biomimetic platform. Polymer membranes on solid support as prepared by the SA method open new opportunities for the creation of artificial membranes with tailored biomimetic properties and functionality.


Assuntos
Membranas Artificiais , Polímeros , Microscopia de Força Atômica , Solventes
5.
Biomacromolecules ; 21(2): 701-715, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31855422

RESUMO

Pore-forming peptides are of high biological relevance particularly as cytotoxic agents, but their properties are also applicable for the permeabilization of lipid membranes for biotechnological applications, which can then be translated to the more stable and versatile polymeric membranes. However, their interactions with synthetic membranes leading to pore formation are still poorly understood, hampering the development of peptide-based nanotechnological applications, such as biosensors or catalytic compartments. To elucidate these interactions, we chose the model peptide melittin, the main component of bee venom. Here, we present our systematic investigation on how melittin interacts with and inserts into synthetic membranes, based on amphiphilic block copolymers, to induce pore formation in three different setups (planar membranes and micrometric and nanometric vesicles). By varying selected molecular properties of block copolymers and resulting membranes (e.g., hydrophilic to hydrophobic block ratio, membrane thickness, surface roughness, and membrane curvature) and the stage of melittin addition to the synthetic membranes, we gained a deeper understanding of melittin insertion requirements. In the case of solid-supported planar membranes, melittin interaction was favored by membrane roughness and thickness, but its insertion and pore formation were hindered when the membrane was excessively thick. The additional property provided by micrometric vesicles, curvature, increased the functional insertion of melittin, which was evidenced by the even more curved nanometric vesicles. Using nanometric vesicles allowed us to estimate the pore size and density, and by changing the stage of melittin addition, we overcame the limitations of peptide-polymer membrane interaction. Mirroring the functionality assay of planar membranes, we produced glucose-sensing vesicles. The design of synthetic membranes permeabilized with melittin opens a new path toward the development of biosensors and catalytic compartments based on pore-forming peptides functionally inserted in synthetic planar or three-dimensional membranes.


Assuntos
Meliteno/metabolismo , Membranas Artificiais , Fragmentos de Peptídeos/metabolismo , Polímeros/metabolismo , Tensoativos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Meliteno/química , Fragmentos de Peptídeos/química , Polímeros/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Tensoativos/química
6.
J Biol Inorg Chem ; 23(1): 109-122, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218642

RESUMO

A new water-soluble photocatalyst for singlet oxygen generation is presented. Its absorption extends to the red part of the spectrum, showing activity up to irradiation at 660 nm. Its efficiency has been compared to that of a commercial analogue (Rose Bengal) for the oxidation of L-methionine. The quantitative and selective oxidation was promising enough to encapsulate the photocatalyst in polymersomes. The singlet oxygen generated in this way can diffuse and remain active for the oxidation of L-methionine outside the polymeric compartment. These results made us consider the use of these polymersomes for antimicrobial applications. E. coli colonies were subjected to oxidative stress using the photocatalyst-polymersome conjugates and nearly all the colonies were damaged upon extensive irradiation while under the same red LED light irradiation, liquid cultures in the absence of porphyrin or porphyrin-loaded polymersomes were unharmed.


Assuntos
Antibacterianos/farmacologia , Portadores de Fármacos/química , Oxazóis/química , Fármacos Fotossensibilizantes/farmacologia , Polímeros/química , Porfirinas/farmacologia , Oxigênio Singlete/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Catálise , Escherichia coli , Luz , Membranas Artificiais , Metionina/química , Nanoestruturas/química , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/síntese química , Porfirinas/química , Porfirinas/efeitos da radiação , Rosa Bengala/química , Oxigênio Singlete/química
7.
Langmuir ; 34(30): 9015-9024, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29972642

RESUMO

Functional surfaces were generated by a combination of enzymes with polymer membranes composed of an amphiphilic, asymmetric block copolymer poly(ethyleneglycol)- block-poly(γ-methyl-ε-caprolactone)- block-poly[(2-dimethylamino)ethylmethacrylate]. First, polymer films formed at the air-water interface were transferred in different sequences onto silica solid support using the Langmuir-Blodgett technique, generating homogeneous monolayers and bilayers. A detailed characterization of these films provided insight into their properties (film thickness, wettability, topography, and roughness). On the basis of these findings, the most promising membranes were selected for enzyme attachment. Functional surfaces were then generated by the adsorption of two model enzymes that can convert phenol and its derivatives (laccase and tyrosinase), well known as high-risk pollutants of drinking and natural water. Both enzymes preserved their activity upon immobilization with respect to their substrates. Depending on the properties of the polymer films, different degrees of enzymatic activity were observed: bilayers provided the best conditions in terms of both overall stability and enzymatic activity. The interaction between amphiphilic triblock copolymer films and enzymes is exploited to engineer "active surfaces" with specific functionalities and high efficacy resulting from the intrinsic activity of the biomolecules that is preserved by an appropriate synthetic environment.


Assuntos
Lacase/metabolismo , Membranas Artificiais , Monofenol Mono-Oxigenase/metabolismo , Polímeros/química , Purificação da Água/métodos , Adsorção , Biomimética , Lacase/química , Monofenol Mono-Oxigenase/química , Propriedades de Superfície , Molhabilidade
8.
J Nanobiotechnology ; 16(1): 63, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165853

RESUMO

This review aims to summarize the advance in the field of nanosensors based on two particular materials: polymer vesicles (polymersomes) and polymer planar membranes. These two types of polymer-based structural arrangements have been shown to be efficient in the production of sensors as their features allow to adapt to different environment but also to increase the sensitivity and the selectivity of the sensing device. Polymersomes and planar polymer membranes offer a platform of choice for a wide range of chemical functionalization and characteristic structural organization which allows a convenient usage in numerous sensing applications. These materials appear as great candidates for such nanosensors considering the broad variety of polymers. They also enable the confection of robust nanosized architectures providing interesting properties for numerous applications in many domains ranging from pollution to drug monitoring. This report gives an overview of these different sensing strategies whether the nanosensors aim to detect chemicals, biological or physical signals.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Polímeros/química , Eletroquímica , Enzimas Imobilizadas , Concentração de Íons de Hidrogênio , Membranas Artificiais , Estrutura Molecular , Oxirredução , Análise Espectral
9.
Nano Lett ; 17(9): 5790-5798, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28851220

RESUMO

We describe an innovative strategy to generate catalytic compartments with triggered functionality at the nanoscale level by combining pH-reversible biovalves and enzyme-loaded synthetic compartments. The biovalve has been engineered by the attachment of stimuli-responsive peptides to a genetically modified channel porin, enabling a reversible change of the molecular flow through the pores of the porin in response to a pH change in the local environment. The biovalve functionality triggers the reaction inside the cavity of the enzyme-loaded compartments by switching the in situ activity of the enzymes on/off based on a reversible change of the permeability of the membrane, which blocks or allows the passage of substrates and products. The complex functionality of our catalytic compartments is based on the preservation of the integrity of the compartments to protect encapsulated enzymes. An increase of the in situ activity compared to that of the free enzyme and a reversible on/off switch of the activity upon the presence of a specific stimulus is achieved. This strategy provides straightforward solutions for the development of catalytic nanocompartments efficiently producing desired molecules in a controlled, stimuli-responsive manner with high potential in areas, such as medicine, analytical chemistry, and catalysis.


Assuntos
Preparações de Ação Retardada/química , Escherichia coli/química , Membranas Artificiais , Peptídeos/química , Polímeros/química , Porinas/química , Sequência de Aminoácidos , Biomimética , Catálise , Enzimas Imobilizadas/administração & dosagem , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/administração & dosagem , Peroxidase do Rábano Silvestre/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Permeabilidade
10.
Biomacromolecules ; 18(11): 3471-3480, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28776980

RESUMO

The design of functional systems with sizes in the nanometer range is a key challenge in fields such as biomedicine, nanotechnology, and engineering. Some of the most promising materials nowadays consist of self-assembling peptides or peptide-polymer hybrid materials because of their versatility and the resulting properties that can be achieved with these structures. Self-assembly of pure amphiphilic peptides or in combination with block copolymers results in a large variety of nanostructures (micelles, nanoparticles (NPs), compartments, planar membranes) each with different characteristics and tunable properties. Here, we describe such novel peptide- or peptide-polymer-based supramolecular nanostructures and emphasize their functionality and various promising applications.


Assuntos
Nanotecnologia/tendências , Peptídeos/química , Polímeros/química , Tensoativos/química , Nanoestruturas/química
11.
Chem Soc Rev ; 45(2): 377-411, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26563574

RESUMO

Biological membranes play an essential role in living organisms by providing stable and functional compartments, preserving cell architecture, whilst supporting signalling and selective transport that are mediated by a variety of proteins embedded in the membrane. However, mimicking cell membranes - to be applied in artificial systems - is very challenging because of the vast complexity of biological structures. In this respect a highly promising strategy to designing multifunctional hybrid materials/systems is to combine biological molecules with polymer membranes or to design membranes with intrinsic stimuli-responsive properties. Here we present supramolecular polymer assemblies resulting from self-assembly of mostly amphiphilic copolymers either as 3D compartments (polymersomes, PICsomes, peptosomes), or as planar membranes (free-standing films, solid-supported membranes, membrane-mimetic brushes). In a bioinspired strategy, such synthetic assemblies decorated with biomolecules by insertion/encapsulation/attachment, serve for development of multifunctional systems. In addition, when the assemblies are stimuli-responsive, their architecture and properties change in the presence of stimuli, and release a cargo or allow "on demand" a specific in situ reaction. Relevant examples are included for an overview of bioinspired polymer compartments with nanometre sizes and membranes as candidates in applications ranging from drug delivery systems, up to artificial organelles, or active surfaces. Both the advantages of using polymer supramolecular assemblies and their present limitations are included to serve as a basis for future improvements.


Assuntos
Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos , Polímeros/química , Animais , Materiais Biomiméticos/síntese química , Humanos , Polímeros/síntese química , Proteínas/química , Propriedades de Superfície
12.
Nano Lett ; 16(11): 7128-7136, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27726407

RESUMO

Self-organization of nanocomponents was mainly focused on solid nanoparticles, quantum dots, or liposomes to generate complex architectures with specific properties, but intrinsically limited or not developed enough, to mimic sophisticated structures with biological functions in cells. Here, we present a biomimetic strategy to self-organize synthetic nanocompartments (polymersomes) into clusters with controlled properties and topology by exploiting DNA hybridization to interconnect polymersomes. Molecular and external factors affecting the self-organization served to design clusters mimicking the connection of natural organelles: fine-tune of the distance between tethered polymersomes, different topologies, no fusion of clustered polymersomes, and no aggregation. Unexpected, extended DNA bridges that result from migration of the DNA strands inside the thick polymer membrane (about 12 nm) represent a key stability and control factor, not yet exploited for other synthetic nano-object networks. The replacement of the empty polymersomes with artificial organelles, already reported for single polymersome architecture, will provide an excellent platform for the development of artificial systems mimicking natural organelles or cells and represents a fundamental step in the engineering of molecular factories.


Assuntos
Materiais Biomiméticos/química , DNA/química , Nanopartículas/química , Organelas/química , Polímeros/química , Alcinos/química , Azidas/química , Reação de Cicloadição , Corantes Fluorescentes/química , Membranas Artificiais , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Tamanho da Partícula , Espectrometria de Fluorescência/métodos , Propriedades de Superfície
13.
Angew Chem Int Ed Engl ; 56(11): 2947-2950, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28261969

RESUMO

Simple cyclic disulfides under high tension mediate the uptake of giant substrates, that is, liposomes and polymersomes with diameters of up to 400 nm, into HeLa Kyoto cells. To place them at the surface of the vesicles, the strained disulfides were attached to the head-group of cationic amphiphiles. Bell-shaped dose response curves revealed self-activation of the strained amphiphiles by self-assembly into microdomains at low concentrations and self-inhibition by micelle formation at high concentrations. Poor colocalization of internalized vesicles with endosomes, lysosomes, and mitochondria indicate substantial release into the cytosol. The increasing activity with disulfide ring tension, inhibition with Ellman's reagent, and inactivity of maleimide and guanidinium controls outline a distinct mode of action that deserves further investigation and is promising for practical applications.


Assuntos
Polímeros/metabolismo , Compostos de Sulfidrila/metabolismo , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Compostos de Sulfidrila/química , Propriedades de Superfície
14.
FASEB J ; 29(5): 1780-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609423

RESUMO

Here we ask the following: 1) what is the CO2 permeability (Pco2) of unilamellar liposomes composed of l-α-phosphatidylcholine (PC)/l-α-phosphatidylserine (PS) = 4:1 and containing cholesterol (Chol) at levels often occurring in biologic membranes (50 mol%), and 2) does incorporation of the CO2 channel aquaporin (AQP)1 cause a significant increase in membrane Pco2? Presently, a drastic discrepancy exists between the answers to these two questions obtained from mass-spectrometric (18)O-exchange measurements (Chol reduces Pco2 100-fold, AQP1 increases Pco2 10-fold) vs. from stopped-flow approaches observing CO2 uptake (no effects of either Chol or AQP1). A novel theory of CO2 uptake by vesicles predicts that in a stopped-flow apparatus this fast process can only be resolved temporally and interpreted quantitatively, if 1) a very low CO2 partial pressure (pCO2) is used (e.g., 18 mmHg), and 2) intravesicular carbonic anhydrase (CA) activity is precisely known. With these prerequisites fulfilled, we find by stopped-flow that 1) Chol-containing vesicles possess a Pco2 = 0.01cm/s, and Chol-free vesicles exhibit ∼1 cm/s, and 2) the Pco2 of 0.01 cm/s is increased ≥ 10-fold by AQP1. Both results agree with previous mass-spectrometric results and thus resolve the apparent discrepancy between the two techniques. We confirm that biologic membranes have an intrinsically low Pco2 that can be raised when functionally necessary by incorporating protein-gas channels such as AQP1.


Assuntos
Aquaporina 1/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidade da Membrana Celular , Colesterol/metabolismo , Lipossomos/metabolismo , Fosfatidilcolinas/metabolismo , Espectrometria de Fluorescência/métodos , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Langmuir ; 32(40): 10235-10243, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27607356

RESUMO

Designing nanocarriers to release proteins under specific conditions is required to improve therapeutic approaches, especially in treating cancer and protein deficiency diseases. We present here supramolecular assemblies based on asymmetric poly(ethylene glycol)-b-poly(methylcaprolactone)-b-poly(2-(N,Ndiethylamino)ethyl methacrylate) (PEG-b-PMCL-b-PDMAEMA) copolymers for controlled localization and pH-sensitive release of proteins. Copolymers self-assembled in soft nanoparticles with a core domain formed by PMCL, and a hydrophilic domain based on PEG mainly embedded inside, and the branched PDMAEMA exposed at the particle surface. We selected as model proteins to be attached to the nanoparticles bovine serum albumin (BSA) and acid sphingomyelinase (ASM), the latter being an ideal candidate for protein replacement therapy. The hydrophilic/hydrophobic ratio, nanoparticle size, and the nature of biomolecules are key factors for modulating protein localization and attachment efficiency. The predominant outer shell of PDMAEMA allows efficient pH-triggered release of BSA and ASM, and in acidic conditions >70% of the bound proteins were released. Uptake of protein-attached nanoparticles by HELA cells, together with low toxicity and pH-responsive release, supports such protein-bound nanoparticles as efficient stimuli-responsive candidates for protein therapy.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Soroalbumina Bovina/química , Esfingomielina Fosfodiesterase/química , Animais , Bovinos , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Poliésteres/síntese química , Poliésteres/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/toxicidade , Propriedades de Superfície , Temperatura
16.
Nano Lett ; 15(6): 3871-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26013972

RESUMO

The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.


Assuntos
Dimetilpolisiloxanos/química , Fluidez de Membrana , Proteínas de Membrana/química , Membranas Artificiais
17.
Chimia (Aarau) ; 70(4): 288-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27131116

RESUMO

Malaria is an infectious disease that needs to be addressed using innovative approaches to counteract spread of drug resistance and to establish or optimize vaccination strategies. With our approach, we aim for a dual action with drug- and 'vaccine-like' activity against malaria. By inhibiting entry of malaria parasites into host red blood cells (RBCs) - using polymer vesicle-based (polymersome) nanomimics of RBC membranes - the life cycle of the parasite is interrupted and the exposed parasites are accessible to the host immune system. Here, we describe how host cell-sized RBC membrane mimics, formed with the same block copolymers as nanomimics, also bind the corresponding malaria parasite ligand and whole malaria parasites, similar to nanomimics. This was demonstrated using fluorescence imaging techniques and confirms the suitability of giant polymersomes (GUVs) as simple mimics for RBC membranes.


Assuntos
Antimaláricos/metabolismo , Heparina/metabolismo , Proteína 1 de Superfície de Merozoito/metabolismo , Merozoítos/metabolismo , Oxazóis/síntese química , Plasmodium falciparum/metabolismo , Polímeros/síntese química , Antimaláricos/síntese química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Membrana Eritrocítica/química , Heparina/química , Humanos , Proteína 1 de Superfície de Merozoito/química , Microscopia de Fluorescência , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Lipossomas Unilamelares/síntese química , Lipossomas Unilamelares/metabolismo
18.
Chimia (Aarau) ; 70(6): 424-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27363371

RESUMO

Reactions inside confined compartments at the nanoscale represent an essential step in the development of complex multifunctional systems to serve as molecular factories. In this respect, the biomimetic approach of combining biomolecules (proteins, enzymes, mimics) with synthetic membranes is an elegant way to create functional nanoreactors, or even simple artificial organelles, that function inside cells after uptake. Functionality is provided by the specificity of the biomolecule(s), whilst the synthetic compartment provides mechanical stability and robustness. The availability of a large variety of biomolecules and synthetic membranes allows the properties and functionality of these reaction spaces to be tailored and adjusted for building complex self-organized systems as the basis for molecular factories.


Assuntos
Organelas , Polímeros/química , Proteínas/química , Nanotecnologia , Permeabilidade
19.
Chimia (Aarau) ; 70(6): 418-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27363370

RESUMO

The objective of molecular systems engineering is to move beyond functional components and primary systems, towards cumulate emergent properties in interfaced higher-order systems of unprecedented multifunctionality and sophistication.


Assuntos
Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/química , Polímeros/química , Proteínas/química
20.
Langmuir ; 31(17): 4868-77, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25849126

RESUMO

Hybrids composed of amphiphilic block copolymers and lipids constitute a new generation of biological membrane-inspired materials. Hybrid membranes resulting from self-assembly of lipids and polymers represent adjustable models for interactions between artificial and natural membranes, which are of key importance, e.g., when developing systems for drug delivery. By combining poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) amphiphilic copolymers (PDMS-b-PMOXA) with various phospholipids, we obtained hybrid films with modulated properties and topology, based on phase separation, and the formation of distinct domains. By understanding the factors driving the phase separation in these hybrid lipid-polymer films, we were able to use them as platforms for directed insertion of membrane proteins. Tuning the composition of the polymer-lipids mixtures favored successful insertion of membrane proteins with desired topological distributions (in polymer or/and lipid regions). Controlled insertion and location of membrane proteins in hybrid films make these hybrids ideal candidates for numerous applications where specific spatial functionality is required.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Dimetilpolisiloxanos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Poliaminas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Proteínas de Membrana/química , Membranas Artificiais , Modelos Biológicos , Polimerização , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA