Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Vasc Interv Radiol ; 35(1): 113-121.e3, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696432

RESUMO

PURPOSE: To improve radiopacity of radiolucent absorbable poly-p-dioxanone (PPDO) inferior vena cava filters (IVCFs) and demostrate their effectiveness in clot-trapping ability. MATERIALS AND METHODS: Tungsten nanoparticles (WNPs) were incorporated along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of WNPs. The physicochemical and in vitro and in vivo imaging properties of PPDO IVCFs with WNPs with single-polymer PHB (W-P) were compared with those of WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). RESULTS: In vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physicomechanical properties of the PPDO sutures. W-P- and W-PB-coated IVCFs were deployed successfully into the inferior vena cava of pig models with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at Week 3 for both filters. CONCLUSIONS: The results highlight the utility of nanoparticles (NPs) and polymers for enhancing radiopacity of medical devices. Different methods of incorporating NPs and polymers can still be explored to improve the effectiveness, safety, and quality of absorbable IVCFs.


Assuntos
Nanopartículas , Filtros de Veia Cava , Suínos , Animais , Tungstênio , Polímeros , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/cirurgia , Remoção de Dispositivo
2.
Molecules ; 24(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581445

RESUMO

Irreversible electroporation (IRE) kills tumor cells by the delivery of short pulses of strong electric fields. However, the field strength decreases with distance from the treatment center. When IRE cannot eradicate the entire tumor mass, the surviving tumor cells can regrow. NVP-BEZ235 is a dual PI3K/mTOR inhibitor that has been administered orally in clinical trials. However, its hydrophobicity and poor water solubility make NVP-BEZ235 difficult to deliver to target areas. To improve its pharmacokinetics and therapeutic efficacy, we have encapsulated NVP-BEZ235 in a liposome (termed as L-BEZ). Our current study focuses on the long-term antitumor efficacy of IRE and intratumoral injection of L-BEZ in HN5 head and neck cancer xenografts in nude mice. We compared in vitro efficacy, as well as the effect on tumor size and growth rate in vivo, between IRE alone, IRE + oral BEZ, and IRE + L-BEZ over the course of two months. All animals in the control group were sacrificed by day 36, due to excess tumor burden. Tumors treated with IRE alone grew faster and larger than those in the control group. IRE + oral BEZ suppressed tumor growth, but the growth rate increased to that of the controls toward the end of 21 days. Only IRE + L-BEZ eradicated the tumor masses, with no palpable or extractable tumor mass observed after two months. The combination of IRE and L-BEZ could effectively eradicate tumors and prevent recurrence.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imidazóis/administração & dosagem , Quinolinas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Cápsulas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletroquimioterapia , Eletroporação , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/farmacocinética , Lipossomos , Camundongos , Camundongos Nus , Quinolinas/farmacocinética , Solubilidade , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Mater Sci Mater Med ; 26(3): 124, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25690619

RESUMO

To determine the feasibility of infusing resorbable inferior vena cava (IVC) filter with iodine-based contrast agents to produce a radiopaque, computed tomography (CT)-visible IVC filter. Infused poly(p-dioxanone) (PPDO) was obtained by incubating PPDO in different concentrations of 4-iodobenzoyl chloride (IBC) and 2,3,5-triiodobenzoic acid (TIBA). Characterizations of infused and nascent PPDO were done using elemental analysis, micro-CT, tensile strength analysis, scanning electron microscopy, and differential scanning calorimetry. Elemental analysis showed percentage loading of 1.07 ± 0.08 for IBC and 0.73 ± 0.01 for TIBA. The iodine loading remained the same within 2 weeks for TIBA but decreased to about 80 % with IBC when subjected to physiological conditions. Micro-CT images showed increased attenuation of the infused PPDO compared with the nascent PPDO. The Hounsfield unit values for infused and nascent sutures were 110 ± 40 and 153 ± 53 for PPDO infused with 2 mg/mL IBC and TIBA, respectively, but only 11.35 ± 2 for nascent PPDO. In contrast the HU for bone was 116 ± 37. Tensile strength analysis showed maximum loads of 1.01 ± 0.43 kg and 10.02 ± 0.54 kg for IBC and TIBA, respectively, and 10.10 ± 0.64 kg for nascent PPDO. Scanning electron microscopy showed that the morphology of the PPDO surface did not change after coating and preliminary cytotoxicity assay showed no killing effect on Hela cells. PPDO infused with a contrast agent is significantly more radiopaque than nascent PPDO on micro-CT imaging. This radiopacity could allow the position and integrity of infused resorbable IVC filter to be monitored while it is in place, thus increasing its safety and efficacy as a medical device.


Assuntos
Materiais Biocompatíveis , Meios de Contraste/administração & dosagem , Dioxanos/administração & dosagem , Iodo/administração & dosagem , Polímeros/administração & dosagem , Filtros de Veia Cava , Solubilidade , Propriedades de Superfície , Resistência à Tração , Microtomografia por Raio-X
4.
Front Biosci (Landmark Ed) ; 29(6): 228, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940050

RESUMO

Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach for a variety of diseases due to their immunomodulatory and tissue regeneration capabilities. Despite their potential, the clinical application of MSC therapies is hindered by limited cell retention and engraftment at the target sites. Electrospun scaffolds, with their high surface area-to-volume ratio and tunable physicochemical properties, can be used as platforms for MSC delivery. However, synthetic polymers often lack the bioactive cues necessary for optimal cell-scaffold interactions. Integrating electrospun scaffolds and biological polymers, such as polysaccharides, proteins, and composites, combines the mechanical integrity of synthetic materials with the bioactivity of natural polymers and represents a strategic approach to enhance cell-scaffold interactions. The molecular interactions between MSCs and blended or functionalized scaffolds have been examined in recent studies, and it has been shown that integration can enhance MSC adhesion, proliferation, and paracrine secretion through the activation of multiple signaling pathways, such as FAK/Src, MAPK, PI3K/Akt, Wnt/ß-catenin, and YAP/TAZ. Preclinical studies on small animals also reveal that the integration of electrospun scaffolds and natural polymers represents a promising approach to enhancing the delivery and efficacy of MSCs in the context of regenerating bone, cartilage, muscle, cardiac, vascular, and nervous tissues. Future research should concentrate on identifying the distinct characteristics of the MSC niche, investigating the processes involved in MSC-scaffold interactions, and applying new technologies in stem cell treatment and biofabrication to enhance scaffold design. Research on large animal models and collaboration among materials scientists, engineers, and physicians are crucial to translating these advancements into clinical use.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Polímeros , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Polímeros/química , Engenharia Tecidual/métodos
5.
ACS Appl Mater Interfaces ; 16(26): 33159-33168, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912610

RESUMO

In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIH─rosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.


Assuntos
Bismuto , Ratos Sprague-Dawley , Rosuvastatina Cálcica , Sirolimo , Animais , Ratos , Sirolimo/química , Sirolimo/farmacologia , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/farmacocinética , Bismuto/química , Bismuto/farmacologia , Poliésteres/química , Masculino , Fístula Arteriovenosa/patologia , Nanopartículas Metálicas/química , Neointima/patologia , Nanopartículas/química , Humanos , Liberação Controlada de Fármacos
6.
Talanta ; 256: 124308, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774896

RESUMO

Bone is the primary metastasis site for lethal prostate cancer, often resulting in poor prognosis, crippling pain, and diminished functioning that drastically reduce both quality of life and survivability Uniquely, prostate cancer bone metastasis induces aberrant bone overgrowth, due to an increase of osteoblasts induced by tumor-secreted bone morphogenetic protein 4 (BMP4). Conjugating drugs to substances that target the tumor-induced bone area within the metastatic tumor foci would be a promising strategy for drug delivery. To develop such a strategy, we conjugated a near infrared (NIR) fluorescent probe, the dye Cy5.5, to serve as a surrogate for drugs, with alendronate, which targets bone. Characterization, such as infrared spectroscopy, confirmed the synthesis of the Cy5.5-ALN conjugate. The maximum absorbance of free Cy5.5, which was at 675 nm, did not change upon conjugation. Alendronate targeted the bone component hydroxyapatite in a dose-dependent manner up to 2.5 µM, with a maximum of 85% of Cy5.5-ALN bound to hydroxyapatite, while free Cy5.5 alone had 6% binding. In in vitro cell binding studies, Cy5.5-ALN bound specifically with mineralized bone matrix of differentiated MC3T3-E1 cells or 2H11 endothelial cells that were induced to become osteoblasts through endothelial-to-osteoblast transition, the underlying mechanism of prostate-cancer-induced bone formation. Neither Cy5.5-ALN nor free Cy5.5 bound to undifferentiated MC3T3-E1 or 2H11 cells. Bone-targeting efficiency studies in non-tumor-bearing mice revealed accumulation over time in the spine, jaw, knees, and paws injected with Cy5.5-ALN, and quantification showed higher accumulation in femurs than in muscle at up to 28 days, while the free Cy5.5 dye was observed circulating without preferential accumulation and decreased over time. There was a linear relationship with fluorescence when the injected concentration of Cy5.5-ALN was between 0.313 and 1.25 nmol/27 g of mouse, as quantified in mouse femurs both in vivo and ex vivo. Ex vivo evaluation of bone-targeting efficiency in nude mice was 3 times higher for bone-forming C4-2b-BMP4 tumors compared to non-bone-forming C4-2b tumors (p-value <0.001). Fluorescence microscopy imaging of the tumors showed that Cy5.5-ALN co-localized with the bone matrix surrounding tumor-induced bone, but not with the viable tumor cells. Together, these results suggest that a drug-ALN conjugate is a promising approach for targeted delivery of drug to the tumor-induced bone area in the metastatic foci of prostate cancer.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Alendronato/farmacologia , Alendronato/química , Linhagem Celular Tumoral , Camundongos Nus , Células Endoteliais , Qualidade de Vida , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Hidroxiapatitas
7.
J Am Chem Soc ; 132(43): 15351-8, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20942456

RESUMO

We synthesized and evaluated a novel class of chelator-free [(64)Cu]CuS nanoparticles (NPs) suitable both for PET imaging and as photothermal coupling agents for photothermal ablation. These [(64)Cu]CuS NPs are simple to make, possess excellent stability, and allow robust noninvasive micro-PET imaging. Furthermore, the CuS NPs display strong absorption in the near-infrared (NIR) region (peak at 930 nm); passive targeting prefers the tumor site, and mediated ablation of U87 tumor cells occurs upon exposure to NIR light both in vitro and in vivo after either intratumoral or intravenous injection. The combination of small diameter (∼11 nm), strong NIR absorption, and integration of (64)Cu as a structural component makes these [(64)Cu]CuS NPs ideally suited for multifunctional molecular imaging and therapy.


Assuntos
Radioisótopos de Cobre/uso terapêutico , Cobre/uso terapêutico , Terapia a Laser/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Citratos/química , Cobre/química , Cobre/farmacocinética , Humanos , Injeções , Camundongos , Nanopartículas , Polietilenoglicóis/química , Ratos
8.
Drug Deliv ; 25(1): 668-678, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29482386

RESUMO

Irreversible electroporation (IRE) is an emerging minimally invasive tumor ablation technique that delivers short pulses of strong electric fields and kills cancer cells by disrupting their cell membranes with the electric pulses. However, clinical studies report that more than 10% of local tumor recurrences occur at the original ablated site. NVP BEZ-235 (BEZ) is a dual PI3K/mTOR inhibitor that has substantial anticancer effects. However, the clinical trials of BEZ was not satisfactory because of its low bioavailability and high toxicity, which stemmed from the use of oral administration of high doses over a long period of time. In this research, we prepared a liposomal formulation of BEZ (L-BEZ) for intratumoral injection and studied its antitumor efficacy alone and in combination with IRE. We hypothesized that IRE could release BEZ from the liposomes and that the combination could decrease tumor viability. Our results show that IRE released BEZ from its liposomal encapsulation. The combination of L-BEZ and IRE killed more Hep3B tumor cells in vitro than did L-BEZ or IRE alone and also inhibited cancer cell proliferation in nude mice bearing Hep3B xenografts. Combination of chemotherapeutic agent loaded nanoparticles could enhance the antitumor efficacy of IRE.


Assuntos
Antineoplásicos/administração & dosagem , Imidazóis/administração & dosagem , Lipossomos/química , Quinolinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Eletroporação/métodos , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/administração & dosagem
9.
Sci Rep ; 7(1): 2147, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526874

RESUMO

Failure to remove a retrievable inferior vena cava (IVC) filter can cause severe complications with high treatment costs. Polydioxanone (PPDO) has been shown to be a good candidate material for resorbable IVC filters. However, PPDO is radioluscent under conventional imaging modalities. Thus, the positioning and integrity of these PPDO filters cannot be monitored by computed tomography (CT) or x-ray. Here we report the development of radiopaque PPDO IVC filters based on gold nanoparticles (AuNPs). Commercially available PPDO sutures were infused with AuNPs. Scanning electron microscopy analysis confirmed the presence of AuNP on the surface of PPDO. Micro-CT and x-ray images of the AuNP-infused PPDO sutures showed significant signal enhancement compared to untreated PPDO sutures. Elemental analysis showed that gold loading exceeded 2000 ppm. Tensile strength and in vitro cytotoxicity showed no significant difference between AuNP-infused and untreated PPDO. In a 10-week stability study, neither the gold content nor the radiopacity of the infused PPDO sutures significantly changed in the first 6 weeks. The increased attenuation of AuNP-infused PPDO sutures indicates their major advantage as a radiopaque resorbable filter material, as the radiopacity allows monitoring of the position and integrity of the filter, thereby increasing its safety and efficacy.


Assuntos
Ouro , Nanopartículas Metálicas , Filtros de Veia Cava , Sobrevivência Celular , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Polidioxanona/química , Embolia Pulmonar/etiologia , Embolia Pulmonar/prevenção & controle , Radiografia , Suturas/efeitos adversos , Resistência à Tração , Veia Cava Inferior/cirurgia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA