Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 441: 129920, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36099739

RESUMO

Phenanthrene (PTH) and 9-phenanthrol (9-PTH) exhibited severe health threats and ecological hazards, for this reason, exploring a high-efficient removing strategy for PTH and 9-PTH could be considered of great urgency. Herein the 4,4'-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer (magnetic BIPH-PHEN) was successfully fabricated via Schiff base polycondensation reaction and the subsequently one-pot embedded method. The mutual aromatic nucleus of BIPH-PHEN polymer and PTH/9-PTH could form π-π interaction, thus improving the capture ability, the embedded Fe3O4 nanoparticles provided the possibility for rapid separation. The physical and chemical properties of the magnetic BIPH-PHEN were systematically characterized. The removal rate of magnetic BIPH-PHEN towards PTH and 9-PTH was 85.65 % and 98.52 %, respectively (PTH or 9-PTH: 8 mg/L; Adsorbent: 0.2 g/L). The DFT calculations including energy calculations and electrostatic potential distribution analyzed the different bonding modes and proposed the most possible bonding modes in the adsorbent/adsorbate system. Moreover, the LUMO and HOMO orbits combined with energy gaps analysis proved the existence and specific types of the π-π interaction. The monolayer adsorption occurred on the homogeneous magnetic BIPH-PHEN surface, simultaneously the chemisorption was dominant. This work not only proposed new sights on assembling magnetic Schiff base polymer for removing polycyclic aromatic hydrocarbons, but also provided a deeper understanding of intramolecular interactions.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Adsorção , Teoria da Densidade Funcional , Fenilenodiaminas , Hidrocarbonetos Policíclicos Aromáticos/análise , Polímeros/química , Bases de Schiff/química , Eletricidade Estática
2.
J Biol Inorg Chem ; 16(1): 173-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20963616

RESUMO

Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bilayer. Only the 16-DOXYL spin probe detected evident structural changes inside the lipid system due to porphyrin intercalation. Fluidity of the lipid system and the type of the porphyrin complex introduced significantly affected the intermolecular interactions, which in certain cases may result in self-assembly of metalloporphyrin molecules within the liposome membrane, reflected in the presence of new lines in the relevant ESR spectra. The most pronounced time-related effects were demonstrated by the EYL liposomes (liquid-crystalline phase) when doped with Mg and Co porphyrins, whereas practically no spectral changes were revealed for the metal-free base and both the Ni and Zn dopants. ESR spectra of the porphyrin-doped gel phase of DPPC liposomes did not show any extra lines; however, they indicated the formation of a more rigid lipid medium. Electronic configuration of the porphyrin's metal center appeared crucial to the degree of molecular reorganization within the phospholipid bilayer system.


Assuntos
Lipossomos/química , Metaloporfirinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Estrutura Molecular
3.
Int J Mol Sci ; 12(9): 5908-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016636

RESUMO

Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.


Assuntos
Previsões , Impressão Molecular/métodos , Impressão Molecular/tendências , Polímeros/metabolismo , Modelos Moleculares , Estrutura Molecular , Reprodutibilidade dos Testes
4.
Z Naturforsch C J Biosci ; 63(5-6): 440-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18669033

RESUMO

Changes in membrane fluidity of porphyrin-doped liposomes have been investigated to assess the kinetics of the fluidization process. Metal complexes of tert-butylphenyl meso-substituted porphyrin, containing ions of Mg, Mn, Fe, Co, Ni and Cu, were used as dopants. Liposomes were obtained by sonication of hen egg yolk lecithin (EYL). Electron paramagnetic resonance (ESR) was applied using two spin probes, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and 16-DOXYL-stearic acid [2-ethyl-2-(15-methoxy-15-oxopentadecyl)-4,4-dimethyl-3-oxazolidinyloxyl], localized at different sites within the membrane to determine the spectroscopic parameters: partition (F) and rotation correlation time (tau), related to the membrane's fluidity. It was found, that porphyrins considerably fluidize the membranes, and the dynamics of this process depends on the kind of the compound used and the membrane's area surveyed by the probes. The Cu complex proved to be the most effective one within the surface layer, whereas the Mn complex most strongly fluidized the deeper parts of the lipid double-layer. Variations in fluidity observed after the porphyrins had been introduced into the liposome were found to stabilize inside the double-layer and within the surface layer after ca. 25 and 50 h, most probably due to hydration of the hydrophilic part of the membrane.


Assuntos
Lipossomos/química , Metaloporfirinas/química , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Fluidez de Membrana , Modelos Moleculares , Conformação Molecular , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA