Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Braz Oral Res ; 32: e97, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30379234

RESUMO

The aim of this study was to investigate the influence of preheating and post-curing methods on diametral tensile strength (DTS), flexural strength (FS), knoop microhardness (KHN), and degree of conversion (DC) of an experimental fiber-reinforced composite (FRC). Specimens (30 wt% of 3-mm-short E-glass fiber, 22.5 wt% of methacrylated-based resin and 47.5 wt% of filler particles) were subjected to: P - photocuring at 1500 mW/cm2 for 40 s (control); P/M - photocuring and microwave post-curing (540W/5 minutes); P/A - photocuring and autoclave post-curing (120°C/15 minutes); PH-P - preheating (60°C) and photocuring; PH-P/M - preheating, photocuring and microwave post-curing; and PH-P/A - preheating, photocuring and autoclave post-curing. Specimens for DTS (Ø 3 x 6 mm) and FS (25 x 2 x 2 mm) were tested at Instron 5965. KHN employed a 50g load for 30s. DC was measured using FTIR spectroscopy. Statistical analysis employed: factorial analysis, normality test, one-way ANOVA and Tukey's HSD test, independent T-test and the Dunnett test. Interaction between factors was not significant (P>0.05). Preheating promoted significantly higher values of FS and KHN (p = 0.0001). Post-curing promoted significantly higher values for KHN (p = 0.0001). For DTS (p = 0.066) and DC (p= 0.724) no statistical difference was found between groups. SEM images showed that preheating promoted better interaction between glass fibers and resin matrix. Preheating increased FS, KHN and DTS, and post-curing increased KHN. DC was not affected by both methods. Preheating and post-curing methods can be used to improve some mechanical properties of FRCs' but degree of conversion remains unaffected.


Assuntos
Resinas Compostas/química , Vidro/química , Temperatura Alta , Cura Luminosa de Adesivos Dentários/métodos , Análise de Variância , Testes de Dureza , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Varredura , Micro-Ondas , Polimerização/efeitos da radiação , Valores de Referência , Estatísticas não Paramétricas , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo
2.
J Prosthodont Res ; 60(1): 47-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589845

RESUMO

PURPOSE: To evaluate the effect of glass fiber/filler particles proportion on flexural strength and diametral tensile strength of an experimental fiber-reinforced composite. METHODS: Four experimental groups (N=10) were created using an experimental short fiber-reinforced composite, having as a factor under study the glass fiber (F) and filler particle (P) proportion: F22.5/P55 with 22.5 wt% of fiber and 55 wt% of filler particles; F25/P52.5 with 25 wt% of fiber and 52.5 wt% of filler particles; F27.5/P50 with 27.5 wt% of fiber and 50 wt% of filler particles; F30/P47.5 with 30 wt% of fiber and 47.5 wt% of filler particles. The experimental composite was made up by a methacrylate-based resin (50% Bis-GMA and 50% TEGDMA). Specimens were prepared for Flexural Strength (FS) (25 mm × 2 mm × 2 mm) and for Diametral Tensile Strength (DTS) (3×6 Ø mm) and tested at 0.5 mm/min in a universal testing machine. RESULTS: The results (in MPa) showed significance (different superscript letters mean statistical significant difference) for FS (p<0.009) and DTS (p<0.001)--FS results: F22.5/P55: 217.24±20.64(B); F25/P52.5: 245.77±26.80(AB); F27.5/P50: 246.88±32.28(AB); F30/P47.5: 259.91±26.01(A). DTS results: F22.5/P55: 21.82±4.42(B); F25/P52.5: 22.00±7.40(B); F27.5/P50: 18.63±4.41(B); F30/P47.5: 31.05±2.97(A). In SEM analysis, areas without fiber reinforcement demonstrated to be more prone to the presence of bubbles and crack development. The group F30/P47.5 showed areas with a great quantity of fibers without empty spaces for crack propagation. CONCLUSION: Increasing fiber content results in higher flexural and diametral tensile strength of an experimental composite reinforced with glass fibers.


Assuntos
Resinas Acrílicas , Resinas Compostas , Materiais Dentários , Análise do Estresse Dentário , Vidro , Poliuretanos , Resistência à Tração , Metacrilatos , Estresse Mecânico
3.
Biomed Res Int ; 2014: 364398, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967361

RESUMO

This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27(BC); P-sil: 155.89 ± 45.27(BC); I-sil/heat: 130.20 ± 22.11(C); P-sil/heat: 169.86 ± 50.29(AB); I: 131.87 ± 15.86(C). For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77(ab); P-sil: 867.61 ± 102.76(d); I-sil/heat: 1162.98 ± 222.07(c); P-sil/heat: 1499.35 ± 339.06(a); and I: 1245.78 ± 211.16(bc). Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Cimentos Dentários/química , Vidro/química , Teste de Materiais/métodos , Metacrilatos/química , Temperatura Alta
4.
Braz. oral res. (Online) ; 32: e97, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974445

RESUMO

Abstract The aim of this study was to investigate the influence of preheating and post-curing methods on diametral tensile strength (DTS), flexural strength (FS), knoop microhardness (KHN), and degree of conversion (DC) of an experimental fiber-reinforced composite (FRC). Specimens (30 wt% of 3-mm-short E-glass fiber, 22.5 wt% of methacrylated-based resin and 47.5 wt% of filler particles) were subjected to: P - photocuring at 1500 mW/cm2 for 40 s (control); P/M - photocuring and microwave post-curing (540W/5 minutes); P/A - photocuring and autoclave post-curing (120°C/15 minutes); PH-P - preheating (60°C) and photocuring; PH-P/M - preheating, photocuring and microwave post-curing; and PH-P/A - preheating, photocuring and autoclave post-curing. Specimens for DTS (Ø 3 x 6 mm) and FS (25 x 2 x 2 mm) were tested at Instron 5965. KHN employed a 50g load for 30s. DC was measured using FTIR spectroscopy. Statistical analysis employed: factorial analysis, normality test, one-way ANOVA and Tukey's HSD test, independent T-test and the Dunnett test. Interaction between factors was not significant (P>0.05). Preheating promoted significantly higher values of FS and KHN (p = 0.0001). Post-curing promoted significantly higher values for KHN (p = 0.0001). For DTS (p = 0.066) and DC (p= 0.724) no statistical difference was found between groups. SEM images showed that preheating promoted better interaction between glass fibers and resin matrix. Preheating increased FS, KHN and DTS, and post-curing increased KHN. DC was not affected by both methods. Preheating and post-curing methods can be used to improve some mechanical properties of FRCs' but degree of conversion remains unaffected.


Assuntos
Resinas Compostas/química , Cura Luminosa de Adesivos Dentários/métodos , Vidro/química , Temperatura Alta , Valores de Referência , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo , Teste de Materiais , Microscopia Eletrônica de Varredura , Análise de Variância , Estatísticas não Paramétricas , Polimerização/efeitos da radiação , Testes de Dureza , Metacrilatos/química , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA