Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 639: 122965, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37084836

RESUMO

Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4266.5 ± 38.6 µg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4 °C and 25 °C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.


Assuntos
Ivermectina , Nanocápsulas , Humanos , Ivermectina/farmacologia , Ivermectina/química , Antiparasitários/farmacologia , Antiparasitários/química , Nanocápsulas/química , Polímeros , Poliésteres/química
2.
J Endod ; 43(9): 1479-1485, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28712636

RESUMO

INTRODUCTION: An acute apical abscess is a severe response of the host to massive invasion of the periapical tissues by bacteria from infected root canals. Although many studies have investigated the microbiota involved in the process, information on the host factors released during abscess formation is scarce. The purpose of this study was to describe the human exoproteome in samples from acute apical abscesses. METHODS: Fourteen pus samples were obtained by aspiration from patients with an acute apical abscess. Samples were subjected to protein digestion, and the tryptic peptides were analyzed using a mass spectrometer and ion trap instrument. The human proteins identified in this analysis were classified into different functional categories. RESULTS: A total of 303 proteins were identified. Most of these proteins were involved in cellular and metabolic processes. Immune system proteins were also very frequent and included immunoglobulins, S100 proteins, complement proteins, and heat shock proteins. Polymorphonuclear neutrophil proteins were also commonly detected, including myeloperoxidases, defensins, elastases, and gelatinases. Iron-sequestering proteins including transferrin and lactoferrin/lactotransferrin were found in many samples. CONCLUSIONS: The human exoproteome included a wide variety of proteins related to cellular processes, metabolism, and immune response. Proteins involved in different mechanisms against infection, tissue damage, and protection against tissue damage were identified. Knowledge of the presence and function of these proteins using proteomics provides an insight into the complex host-pathogen relationship, the host antimicrobial strategies to fight infections, and the disease pathogenesis.


Assuntos
Abscesso Periapical/metabolismo , Abscesso Periapical/microbiologia , Proteínas/metabolismo , Proteoma , Doença Aguda , Humanos , Abscesso Periapical/imunologia , Proteínas/análise , Supuração/metabolismo
3.
Int J Nanomedicine ; 10: 5837-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425085

RESUMO

Ultradeformable vesicles (UDV) have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE) after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by "transfersomal method", for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by "ethosomal method". Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE) > ethosomes (E) ≥ transfersomes (T). This result was consistent with the release and skin penetration profiles for Vitamin E-loaded UDV. However, the releasing results were totally the opposite for caffeine-loaded UDV, which might be explained by the solubility and thermodynamic activity of this active in each formulation instead of the UDV deformability attending to the higher non-incorporated fraction of caffeine. Anyway, a high skin penetration and permeation for all caffeine-loaded UDV were obtained. Transethosomes were more deformable than ethosomes and transfersomes due to the presence of both ethanol and surfactant in their composition. All these UDV were suitable for a deeper skin penetration, especially transethosomes.


Assuntos
Cafeína/administração & dosagem , Portadores de Fármacos/química , Lipossomos/química , Pele/efeitos dos fármacos , Vitamina E/administração & dosagem , Administração Cutânea , Administração Tópica , Antioxidantes/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Eletrônica de Transmissão , Absorção Cutânea , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA