Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 42: 102550, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35292368

RESUMO

mRNA therapeutics have increased in popularity, largely due to the transient and fast nature of protein expression and the low risk of off-target effects. This has increased drastically with the remarkable success of mRNA-based vaccines for COVID-19. Despite advances in lipid nanoparticle (LNP)-based delivery, the mechanisms that regulate efficient endocytic trafficking and translation of mRNA remain poorly understood. Although it is widely acknowledged that the extracellular matrix (ECM) regulates uptake and expression of exogenous nano-complexed genetic material, its specific effects on mRNA delivery and expression have not yet been examined. Here, we demonstrate a critical role for matrix stiffness in modulating both mRNA transfection and expression and uncover distinct mechano-regulatory mechanisms for endocytosis of mRNA through RhoA mediated mTOR signaling and cytoskeletal dynamics. Our findings have implications for effective delivery of therapeutic mRNA to targeted tissues that may be differentially affected by tissue and matrix stiffness.


Assuntos
COVID-19 , Nanopartículas , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Hidrogéis , Lipídeos/genética , Lipossomos , RNA Mensageiro/genética
2.
Dent Mater ; 36(1): 88-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31780101

RESUMO

INTRODUCTION: An understanding of the extracellular matrix characteristics which stimulate and guide stem cell differentiation in the dental pulp is fundamental for the development of enhanced dental regenerative therapies. Our objectives, in this study, were to determine whether stem cells from the apical papilla (SCAP) responded to substrate stiffness, whether hydrogels providing micropatterned topographical cues stimulate SCAP self-alignment, and whether the resulting alignment could influence their differentiation towards an odontogenic lineage in-vitro. METHODS: Experiments utilized gelatin methacryloyl (GelMA) hydrogels of increasing concentrations (5, 10 and 15%). We determined their compressive modulus via unconfined compression and analyzed cell spreading via F-actin/DAPI immunostaining. GelMA hydrogels were micropatterned using photolithography, in order to generate microgrooves and ridges of 60 and 120µm, onto which SCAP were seeded and analyzed for self-alignment via fluorescence microscopy. Lastly, we analyzed the odontogenic differentiation of SCAP using alkaline phosphatase protein expression (ANOVA/Tukey α=0.05). RESULTS: SCAP appeared to proliferate better on stiffer hydrogels. Both 60 and 120µm micropatterned hydrogels guided the self-alignment of SCAP with no significant difference between them. Similarly, both 60 and 120µm micropattern aligned cells promoted higher odontogenic differentiation than non-patterned controls. SIGNIFICANCE: In summary, both substrate mechanics and geometry have a statistically significant influence on SCAP response, and may assist in the odontogenic differentiation of dental stem cells. These results may point toward the fabrication of cell-guiding scaffolds for regenerative endodontics, and may provide cues regarding the development of the pulp-dentin interface during tooth formation.


Assuntos
Hidrogéis , Odontogênese , Diferenciação Celular , Proliferação de Células , Papila Dentária , Polpa Dentária , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA