Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2716-2727, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291786

RESUMO

Plastics are controversial due to their production from fossil fuels, emissions during production and disposal, potential toxicity, and leakage to the environment. In light of these concerns, calls to use less plastic products and move toward nonplastic alternatives are common. However, these calls often overlook the environmental impacts of alternative materials. This article examines the greenhouse gas (GHG) emission impact of plastic products versus their alternatives. We assess 16 applications where plastics are used across five key sectors: packaging, building and construction, automotive, textiles, and consumer durables. These sectors account for about 90% of the global plastic volume. Our results show that in 15 of the 16 applications a plastic product incurs fewer GHG emissions than their alternatives. In these applications, plastic products release 10% to 90% fewer emissions across the product life cycle. Furthermore, in some applications, such as food packaging, no suitable alternatives to plastics exist. These results demonstrate that care must be taken when formulating policies or interventions to reduce plastic use so that we do not inadvertently drive a shift to nonplastic alternatives with higher GHG emissions. For most plastic products, increasing the efficiency of plastic use, extending the lifetime, boosting recycling rates, and improving waste collection would be more effective for reducing emissions.


Assuntos
Gases de Efeito Estufa , Reciclagem , Plásticos
2.
Environ Sci Technol ; 56(2): 1267-1277, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34981927

RESUMO

Polymers reinforced with virgin carbon fibers (VCF) are being used to make spar caps of wind turbine (WT) blades and polymers with glass fibers (GF) to make skins of the blade components. Here, we assess the life cycle environmental performance of the hybrid blades with spar caps based on VCF and the shells and shear webs based on RCF (recycled CF) composites (RCF-hybrid). The production of the WT blades and associated reinforced polymers is assumed to occur in Sweden, with their uses and end-of-life management in the European region. The functional unit is equivalent to three blades in an offshore WT with the market incumbent blades solely based on the GF composite or the hybrid option. The RCF-hybrid blades offer 12-89% better environmental performance in nine out of 10 impact categories and 6-26% better in six out of 10 impact categories. The RCF-hybrid blades exhibit optimum environmental performance when the VCF manufacturing facilities are equipped with pollution abatement systems including regenerative thermal oxidizers to reduce ammonia and hydrogen cyanide emissions; spar caps are made using VCF epoxy composites through pultrusion and resin infusion molding, and the blade scrap is mechanically recycled at the end of life. The energy and carbon payback times for the RCF-hybrid blades were found to be 5-13% lower than those of the market incumbents.


Assuntos
Carbono , Reciclagem , Fibra de Carbono , Suécia
3.
Environ Sci Technol ; 51(21): 12727-12736, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29017318

RESUMO

The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.


Assuntos
Carbono , Reciclagem , Fibra de Carbono , Plásticos , Aço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA