Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sci Total Environ ; 866: 161362, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610618

RESUMO

Biofloc technology, extensively used in intensive aquaculture systems, can prompt the formation of microbial aggregates. Microplastics (MPs) are detected abundantly in aquaculture waters. This study explored the effects of MPs on biofloc formation, microbial community composition and nitrogen transformation function in simulated biofloc aquaculture production systems. The formation process and settling performance of bioflocs were examined. High-throughput sequencing of 16S and 18S rRNA genes was used to investigate the microbial community compositions of bioflocs. Nitrogen dynamics were monitored and further explained from functional genes and microorganisms related to nitrogen transformation by metagenome sequencing. We found that the aggregates consisting of bioflocs and MPs were formed and the systems with MPs had relatively weak settling performance. No significant differences in bacterial diversity (p > 0.05) but significant differences in eukaryotic diversity (p < 0.05) were found between systems without and with MPs. Significant separations in the microbial communities of prokaryotes (p = 0.01) and eukaryotes (p = 0.01) between systems without and with MPs were observed. The peak concentration of nitrite nitrogen (NO2--N) in systems with MPs was lower than that in systems without MPs (pControl/MPs Low = 0.02 and pControl/MPs High = 0.03), probably due to the low abundance of hao and affiliated Alphaproteobacteria_bacterium_HGW-Alphaproteobacteria-1 and Alphaproteobacteria_bacterium, but the high abundance of nxrA and affiliated Alphaproteobacteria_bacterium_SYSU_XM001 and Hydrogenophaga_pseudoflava that related to nitrification. The low concentration of NO2--N in systems with MPs suggested that the presence of MPs might inhibit ammonia oxidation but promote nitrite oxidation by altering the microbial community structure and function. These results indicated that aggregates consisting of bioflocs and MPs could be formed in aquaculture water, and thus, inhibiting their settlement and altering nitrogen transformation function by affecting the microbial community composition.


Assuntos
Microbiota , Microplásticos , Plásticos , Nitrogênio , Dióxido de Nitrogênio , Aquicultura/métodos
2.
J Hazard Mater ; 399: 123044, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32521315

RESUMO

Microplastics (MPs) pollution becomes a research hotspot and many studies focus on threats of MPs, but few have integrated multi-level indicators to assess response to MPs of organisms. Here we exposed guppy (Poecilia reticulata) to MPs (polystyrene; 32-40 µm diameter) with two concentrations (100 and 1000 µg/L) for 28 days. We found that higher accumulation of MPs appeared in guppy gill than that in gut. MPs had no obvious effect on guppy growth but significantly inhibited the condition factor. Oxidative stress presented in guppy viscera with activated antioxidants. The decline of Na+/K+-ATP activity in guppy indicated that MPs might interfere with the osmotic balance of gills. MPs reduced body molar ratio of C:N and δ13C value, but no apparent impact on δ15N. It implied that MPs probably altered elemental transition. Eventually, through integrated biomarkers response index (IBR) of guppy, we found that catalase activity was the highest index in response to MPs, and the response of growth performance to MPs was lower than that of oxidative stress and element alteration. Risks of MPs aggravated in a concentration-dependent manner. These findings suggested that multi-level IBR approach should be adopted to quantify effects of MPs on aquatic organisms, especially on fish.


Assuntos
Microplásticos , Poecilia , Animais , Antioxidantes , Estresse Oxidativo , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA