Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Hum Evol ; 185: 103454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977021

RESUMO

The genus Macaca includes medium- to large-bodied monkeys and represents one of the most diverse primate genera, also having a very large geographic range. Nowadays, wild macaque populations are found in Asia and Africa, inhabiting a wide array of habitats. Fossil macaques were also present in Europe from the Late Miocene until the Late Pleistocene. Macaques are considered ecologically flexible monkeys that exhibit highly opportunistic dietary strategies, which may have been critical to their evolutionary success. Nevertheless, available ecological information regarding fossil European species is very sparse, limiting our knowledge of their evolutionary history in this geographic area. To further our understanding of fossil European macaque ecology, we investigated the dietary ecology of Macaca majori, an insular endemic species from Sardinia. In particular, we characterized the dental capabilities and potential dietary adaptations of M. majori through dental topographic and enamel thickness analyses of two M2s from the Early Pleistocene site of Capo Figari (1.8 Ma). We also assessed its diet through dental microwear texture analysis, while the microwear texture of M. majori was also compared with microwear textures from other European fossil macaques from mainland Europe. The dental topographic and enamel thickness analyses suggest that M. majori frequently consumes hard/mechanically challenging and/or abrasive foods. The results of the dental microwear analysis are consistent with this interpretation and further suggest that M. majori probably exhibited more durophagous dietary habits than mainland Plio-Pleistocene macaques. Overall, our results indicate that M. majori probably occupied a different dietary niche compared to its mainland fossil relatives, which suggests that they may have inhabited different paleoenvironments.


Assuntos
Fósseis , Macaca , Animais , Itália , Primatas , Dieta/veterinária
2.
J Hum Evol ; 168: 103199, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667203

RESUMO

Currently, very little is known about the ecology of extinct Eurasian cercopithecids. Dietary information is crucial in understanding the ecological adaptations and diversity of extinct cercopithecids and the evolution of this family. For example, the colobine genus Dolichopithecus is represented by multiple large-bodied species that inhabited Eurasia during the Pliocene-Early Pleistocene. The available evidence, though limited, suggests semiterrestrial locomotion, which contrasts with most extant African and Asian colobines that exhibit morphological and physiological adaptations for arboreality and folivory. These differences raise questions regarding the dietary specialization of early colobine taxa and how/if that influenced their dispersion out of Africa and into Eurasia. To further our understanding of the ecology of Plio-Pleistocene cercopithecids, we characterized the dental capabilities and potential dietary adaptations of Dolichopithecus ruscinensis through dental topographic and enamel thickness analyses on an M1 from the locality of Serrat d'en Vacquer, Perpignan (France). We also assessed the feeding behavior of D. ruscinensis through dental microwear texture analysis on a broad sample of fossil molars from fossil sites in France, Greece, Bulgaria, and Romania. Dental topographic and enamel thickness analyses suggest that D. ruscinensis could efficiently process a wide range of foods. Results of the dental microwear texture analysis suggest that its diet ranged from folivory to the consumption of more mechanically challenging foods. Collectively, this suggests a more opportunistic feeding behavior for Dolichopithecus than characteristic of most extant colobines.


Assuntos
Colobinae , Fósseis , Animais , Colobinae/anatomia & histologia , Dieta , Ecologia , Comportamento Alimentar , Dente Molar/anatomia & histologia
3.
Am J Phys Anthropol ; 165(1): 123-138, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28991380

RESUMO

OBJECTIVES: Dental microwear is a promising tool to reconstruct animals' diet because it reflects the interplay between the enamel surface and the food items recently consumed. This study examines the sources of inter-individual variations in dietary habits in a free-ranging population of mandrills (Mandrillus sphinx) using a combination of feeding monitoring and in vivo dental microwear textural analysis (DMTA). METHODS: We investigated the impact of seasonality and individual traits on four DMTA parameters. In parallel, we further studied the influence of the physical properties of the food items consumed on these four parameters, using three proxies (mechanical properties, estimates of phytolith and external grit contents). RESULTS: We found that seasonality, age, and sex all impact DMTA parameters but those results differ depending on the facet analyzed (crushing vs. shearing facets). Three DMTA parameters (anisotropy, complexity, and heterogeneity of complexity) appear sensitive to seasonal variations and anisotropy also differs between the sexes while textural fill volume tends to vary with age. Moreover, the physical properties of the food items consumed vary seasonally and also differ depending on individual sex and age. CONCLUSION: Considering the interplay between the tested variables and both dental microwear and diet, we reaffirm that food physical properties play a major role in microwear variations. These results suggest that DMTA parameters may provide valuable hints for paleoecological reconstruction using fragmentary fossil dental remains.


Assuntos
Dieta/veterinária , Mandrillus/anatomia & histologia , Mandrillus/fisiologia , Desgaste dos Dentes/diagnóstico por imagem , Desgaste dos Dentes/patologia , Dente/diagnóstico por imagem , Dente/patologia , Animais , Antropologia Física , Comportamento Alimentar/fisiologia , Feminino , Masculino , Músculo Masseter/fisiologia , Modelos Dentários , Glândula Parótida/fisiologia , Estações do Ano
4.
J Hum Evol ; 112: 79-92, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29037418

RESUMO

Extant colobine monkeys have been historically described as specialized folivores. However, reports on both their behavior and dental metrics tend to ascribe a more varied diet to them. In particular, several species, such as Pygathrix nemaeus and Rhinopithecus roxellana, are dedicated seasonal seed eaters. They use the lophs on their postcanine teeth to crack open the hard endocarp that protects some seeds. This raises the question of whether the bilophodont occlusal pattern of colobine monkeys first evolved as an adaptation to folivory or sclerocarpic foraging. Here, we assess the sclerocarpic foraging ability of the oldest European fossil colobine monkey, Mesopithecus. We use computed microtomograpy to investigate the three-dimensional (3D) dental topography and enamel thickness of upper second molars ascribed to the late Miocene species Mesopithecus pentelicus from Pikermi, Greece. We compare M. pentelicus to a sample of extant Old World monkeys encompassing a wide range of diets. Furthermore, we combine classic dietary categories such as folivory with alternative categories that score the ability to crack, grind and shear mechanically challenging food. The 3D dental topography of M. pentelicus predicts an ability to crack and grind hard foods such as seeds. This is consistent with previous results obtained from dental microwear analysis. However, its relatively thin enamel groups M. pentelicus with other folivorous cercopithecids. We interpret this as a morphological trade-off between the necessity to avoid tooth failure resulting from hard food consumption and the need to process a high amount of leafy material. Our study demonstrates that categories evaluating the cracking, grinding or shearing ability, traditional dietary categories, and dental topography combine well to make a powerful tool for the investigation of diet in extant and extinct primates.


Assuntos
Colobinae/anatomia & histologia , Dieta , Fósseis/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Colobinae/fisiologia , Grécia , Microtomografia por Raio-X
5.
Proc Biol Sci ; 283(1838)2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629027

RESUMO

Both dust and silica phytoliths have been shown to contribute to reducing tooth volume during chewing. However, the way and the extent to which they individually contribute to tooth wear in natural conditions is unknown. There is still debate as to whether dental microwear represents a dietary or an environmental signal, with far-reaching implications on evolutionary mechanisms that promote dental phenotypes, such as molar hypsodonty in ruminants, molar lengthening in suids or enamel thickening in human ancestors. By combining controlled-food trials simulating natural conditions and dental microwear textural analysis on sheep, we show that the presence of dust on food items does not overwhelm the dietary signal. Our dataset explores variations in dental microwear textures between ewes fed on dust-free and dust-laden grass or browse fodders. Browsing diets with a dust supplement simulating Harmattan windswept environments contain more silica than dust-free grazing diets. Yet browsers given a dust supplement differ from dust-free grazers. Regardless of the presence or the absence of dust, sheep with different diets yield significantly different dental microwear textures. Dust appears a less significant determinant of dental microwear signatures than the intrinsic properties of ingested foods, implying that diet plays a critical role in driving the natural selection of dental innovations.


Assuntos
Dieta/veterinária , Poeira , Desgaste dos Dentes , Animais , Feminino , Alimentos , Dente Molar , Ovinos , Suínos
6.
J Exp Biol ; 219(Pt 4): 501-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26889000

RESUMO

Plant-herbivore interactions are hypothesized to drive vole population cycles through the grazing-induced production of phytoliths in leaves. Phytoliths act as mechanical defences because they deter herbivory and lower growth rates in mammals. However, how phytoliths impair herbivore performance is still unknown. Here, we tested whether the amount of phytoliths changes tooth wear patterns. If confirmed, abrasion from phytoliths could play a role in population crashes. We applied dental microwear texture analysis (DMTA) to laboratory and wild voles. Lab voles were fed two pelleted diets with differing amounts of silicon, which produced similar dental textures. This was most probably due to the loss of food mechanical properties through pelletization and/or the small difference in silicon concentration between diets. Wild voles were trapped in Poland during spring and summer, and every year across a population cycle. In spring, voles feed on silica-rich monocotyledons, while in the summer they also include silica-depleted dicotyledons. This was reflected in the results; the amount of silica therefore leaves a traceable record in the dental microwear texture of voles. Furthermore, voles from different phases of population cycles have different microwear textures. We tentatively propose that these differences result from grazing-induced phytolith concentrations. We hypothesize that the high amount of phytoliths in response to intense grazing in peak years may result in malocclusion and other dental abnormalities, which would explain how these silicon-based plant defences help provoke population crashes. DMTA could then be used to reconstruct vole population dynamics using teeth from pellets or palaeontological material.


Assuntos
Arvicolinae/fisiologia , Plantas/química , Dióxido de Silício/química , Desgaste dos Dentes , Animais , Arvicolinae/anatomia & histologia , Dieta/veterinária , Herbivoria , Folhas de Planta/química , Polônia , Estações do Ano , Dióxido de Silício/administração & dosagem
7.
J Hum Evol ; 65(2): 185-98, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23866679

RESUMO

Eurasia was home to a great radiation of hominoid primates during the Miocene. All were extinct by the end of the Miocene in Western Eurasia. Here, we investigate the hypothesis of climate and vegetation changes at a local scale when the cercopithecoid Mesopithecus replaced the hominoid Ouranopithecus along the Axios River, Greece. Because they are herbivorous and were much more abundant than primates, bovids are preferred to primates to study climate change in the Balkans as a cause of hominoid extinction. By measuring carbon stable isotope ratios of bovid enamel, we conclude that Ouranopithecus and Mesopithecus both evolved in pure C3 environments. However, the large range of δ(13)C values of apatite carbonate from bovids combined with their molar microwear and mesowear patterns preclude the presence of dense forested landscapes in northern Greece. Instead, these bovids evolved in rather open landscapes with abundant grasses in the herbaceous layer. Coldest monthly estimated temperatures were below 10°C and warmest monthly temperatures rose close to or above 20°C for the two time intervals. Oxygen isotope compositions of phosphate from bulk samples did not show significant differences between sites but did show between-species variation within each site. Different factors influence oxygen isotope composition in this context, including water provenience, feeding ecology, body mass, and rate of amelogenesis. We discuss this latter factor in regard to the high intra-tooth variations in δ(18)Op reflecting important amplitudes of seasonal variations in temperature. These estimations fit with paleobotanical data and differ slightly from estimations based on climate models. This study found no significant change in climate before and after the extinction of Ouranopithecus along the Axios River. However, strong seasonal variations with relatively cold winters were indicated, conditions quite usual for extant monkeys but unusual for great apes distributed today in inter-tropical regions.


Assuntos
Biodiversidade , Catarrinos/fisiologia , Mudança Climática , Ecossistema , Fósseis , Ruminantes/fisiologia , Animais , Península Balcânica , Evolução Biológica , Isótopos de Carbono/análise , Dieta , Grécia , Isótopos de Oxigênio/análise , Paleontologia , Dente/química
8.
J Hum Evol ; 63(1): 150-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22658333

RESUMO

The present study attempts to characterize the environmental conditions that prevailed along the western shores of the Central Paratethys and its hinterland during the early middle Miocene at the same time t primates reached their peak in species diversity in Central Europe. Based on faunal structure (using cenograms), paleotemperature reconstruction (using cricetid diversity), and dietary reconstruction of ruminants (using molar micro-wear analyses), four faunal assemblages are used to characterize the regional environmental context. The cenograms for Göriach and Devínska Novà Ves Zapfe's fissure site support the presence of mosaic environments with open areas under rather humid conditions. This is also supported by the dental micro-wear analyses of ruminants. The species of Palaeomerycidae were most probably the only predominant browsers. Surprisingly, the three cervids, Dicrocerus, Heteroprox, and Euprox, were highly involved in grazing. Pseudoeotragus seegrabensis was likely a generalist and the two specimens assigned to the second bovid, Eotragus clavatus, were browsers. The two species of tragulids plot between fruit browsers and generalists. Moreover, paleotemperatures based on cricetid diversity estimate mean annual temperature at about 18 °C with potential high seasonal variations. These data support the predominance of mosaic landscapes along the western shores of the Central Paratethys and its hinterland during the Miocene Climatic Optimum as primates reach a peak in species diversity. This result lends credence to the hypothesis that environmental heterogeneity favours radiation among mammals, and that the specific environmental context of the Central Paratethys western border might explain the high diversity of the middle Miocene primates.


Assuntos
Evolução Biológica , Mudança Climática , Meio Ambiente , Mamíferos/classificação , Paleontologia , Primatas/fisiologia , Animais , Áustria , Biodiversidade , Peso Corporal , Dieta , Fósseis , Primatas/classificação , Eslováquia , Temperatura
9.
J Hum Evol ; 63(1): 162-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22677560

RESUMO

The aim of this study is to describe the environments where the cercopithecid Mesopithecus was found during latest Miocene in Europe. For this purpose, we investigate the paleoecology of the herbivorous ungulate mesofauna of three very rich late Miocene fossil localities from southwestern Bulgaria: Hadjidimovo, Kalimantsi and Strumyani. While Mesopithecus has been found in the two first localities, no primate remains have yet been identified in Strumyani. Comparison between localities with and without primates using the herbivore mesofauna allows the cross-corroboration of paleoenvironmental conditions where this primate did and did not live. A multi-parameter statistical approach involving 117 equid and 345 bovid fossil dental and postcranial (phalanges, metapodia, astragali) remains from these three localities provides species to generic-level diet and locomotor habit information in order to characterize the environment in which Mesopithecus evolved. The analysis of dental mesowear indicates that the bovids were mainly mixed feeders, while coeval equids were more engaged in grazing. Meanwhile, postcranial remains show that the ungulate species from Hadjidimovo and Kalimantsi evolved in dry environments with a continuum of habitats ranging from slightly wooded areas to relatively open landscapes, whereas the Mesopithecus-free Strumyani locality was in comparison reflecting a rather contrasted mosaic of environments with predominant open and some more closed and wet areas. Environments in which Mesopithecus is known during the late Miocene were not contrasted landscapes combining open grassy areas and dense forested patches, but instead rather restricted to slightly wooded and homogeneous landscapes including a developed grassy herbaceous layer.


Assuntos
Biodiversidade , Colobinae/fisiologia , Ecossistema , Fósseis , Mamíferos/classificação , Animais , Evolução Biológica , Bulgária , Meio Ambiente , Paleontologia
10.
Am J Phys Anthropol ; 147(2): 201-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22101859

RESUMO

Diet is of paramount importance in the life of a primate. It is also highly variable, as potential food sources vary in spatial distribution and availability over time. The fossil record, due to its fragmentary nature, offers few possibilities to assess the dietary range of a given primate across its spatial and temporal distribution. Here we focus on three taxa, Leptadapis magnus (Adapidae, Adapiformes), Necrolemur cf. antiquus (Microchoeridae, Omomyiformes), and Pseudoloris parvulus (Microchoeridae, Omomyiformes). These taxa occur at different localities of the Late Eocene in the south of France ranging from MP16 (Robiac, Lavergne; 39 Ma), MP17a (La Bouffie, Euzet, Fons 4; 38 Ma) to MP17b (Perrière; 37 Ma). Diets of fossil taxa are assessed here by dental microwear analysis using a comparative database of 11 species of living strepsirhines. On the whole, leaves were a preferred food for the large-bodied Leptadapis (4-5 kg). However, the diet of this taxon varied from a mix of leaves and fruit at La Bouffie, a closed tropical rain forest environment, to a strictly leaf-eating one in the more open environment of Perrière. Based on body mass (200-350 g) and dental microwear patterns, Necrolemur had a mainly fruit-based diet, perhaps supplemented by insects. However, the comparison of the different localities reveals the dietary range of this small-bodied omomyiform which seems to vary between insects and a much softer diet. Pseudoloris had a diet strictly based on insects. Contrary to Leptadapis or Necrolemur, its diet seems to have been confined to insects whatever the locality considered.


Assuntos
Comportamento Alimentar/fisiologia , Fósseis , Haplorrinos/anatomia & histologia , Strepsirhini/anatomia & histologia , Dente/anatomia & histologia , Análise de Variância , Animais , Dieta , Ecologia , França , Análise dos Mínimos Quadrados , Paleodontologia , Desgaste dos Dentes
11.
Proc Natl Acad Sci U S A ; 106(36): 15390-3, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706401

RESUMO

Previous morphological and isotopic studies indicate that Late Pleistocene cave bear (Ursus spelaeus) diet ranged from mostly vegetarian to omnivory or even carnivory. However, such analyses do not provide information on seasonal diets, and only provide an average record of diet. A dental microwear analysis of 43 young and adult individuals demonstrate that, during the predormancy period, cave bears from Goyet (Late Pleistocene, Belgium) were not strictly herbivorous, but had a mixed diet composed of hard items (e.g., possibly bone), invertebrates (e.g., insects), meat (ungulates, small vertebrates), and/or plant matter (hard mast, seeds, herbaceous vegetations, and fruits). Therefore, our results indicate that cave bears at Goyet were generalist omnivores during the predormancy period, which is consistent with current data on the dietary ecology of extant bears during this season. These data also raise questions about the ecological role and causes of the extinction of cave bears.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta , Comportamento Alimentar/fisiologia , Atrito Dentário/patologia , Ursidae/fisiologia , Animais , Bélgica , Análise de Componente Principal , Estações do Ano
12.
Anat Rec (Hoboken) ; 305(11): 3150-3160, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35142076

RESUMO

Dietary habits exert significant selective pressures on anatomical structures in animals, leading to substantial morphological adaptations. Yet, the relationships between the mandible and diet are still unclear, raising issues for paleodietary reconstructions notably. To assess the impact of food hardness and size on morphological structures, we used an experimental baseline using a model based on the domestic pig, an omnivorous mammal with bunodont, thick-enameled dentition, and chewing movements similar to hominids. We hypothesized that the consumption of different types of seeds would result in substantial differences in the morphology of the mandible despite similar overall diets. The experiment was conducted on four groups of juvenile pigs fed with mixed cereal and soy flours. The control group received only flours. We supplemented the four others with either 10 hazelnuts, 30 hazelnuts, 30% barley seeds, or 20% corn kernels per day. We investigated the shape differences between the controlled-fed groups using three-dimensional geometric morphometrics. Our results provide strong evidence that the supplemental consumption of a significant amount of seeds for a short period (95 days) substantially modify the mandibular morphology of pigs. Our analyses suggest that this shape differentiation is due to the size of the seeds, requiring high and repeated bite force, rather than their hardness. These results provide new perspectives for the use of mandibular morphology as a proxy in paleodietary reconstructions complementing dental microwear textures analyses.


Assuntos
Dieta , Hominidae , Animais , Grão Comestível/química , Mamíferos , Mandíbula/anatomia & histologia , Mastigação , Suínos
13.
Evolution ; 75(8): 1983-1997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131927

RESUMO

Extant colobine monkeys are specialized leaf eaters. But during the late Miocene, western Eurasia was home to colobines that were less efficient at chewing leaves than they were at breaking seed shells. To understand the link between folivory and granivory in this lineage, the dietary niche of Mesopithecus delsoni and Mesopithecus pentelicus was investigated in southeastern Europe, where a major environmental change occurred during the late Miocene. We combined dental topographic estimates of chewing efficiency with dental microwear texture analysis of enamel wear facets. Mesopithecus delsoni was more efficient at chewing leaves than M. pentelicus, the dental topography of which matches an opportunistic seed eater. Concurrently, microwear complexity increases in M. pentelicus, especially in the northernmost localities corresponding to present-day Bulgaria. This is interpreted as a dietary shift toward hard foods such as seeds or tubers, which is consistent with the savanna and open mixed forest biomes that covered Bulgaria during the Tortonian. The fact that M. delsoni was better adapted to folivory and consumed a lower amount of hard foods than M. pentelicus suggests that colobines either adapted to folivory before their dispersal to Europe or evolved adaptations to leaf consumption in multiple occurrences.


Assuntos
Colobinae , Animais , Dieta , Europa (Continente) , Fósseis , Folhas de Planta
14.
J Hum Evol ; 59(1): 96-108, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20510435

RESUMO

The primate family, Amphipithecidae, lived during the early Cenozoic in South Asia. In this study, the diet of late middle Eocene amphipithecids from the Pondaung Formation (Central Myanmar) is characterized using three different approaches: body mass estimation, shearing quotient quantification and dental microwear analysis. Our results are compared with other Paleogene amphipithecids from Thailand and Pakistan, and to the other members of the primate community from the Pondaung Formation. Our results indicate a majority of frugivores within this primate community. Pondaungia and "Amphipithecus" included hard objects, such as seeds and nuts, in their diet. Folivory is secondary for these taxa. Myanmarpithecus probably had a mixed diet based on fruit and leaves. Contrasting results and a unique dental morphology distinguish Ganlea from other amphipithecids. These render interpretation difficult but nevertheless indicate a diet tending towards leaves and fruit. However, the anterior dentition of Ganlea suggests that this taxon engaged in seed predation, using its protruding canine as a tool to husk hard fruits and obtain the soft seeds inside. Bahinia and Paukkaungia, two other Pondaung primates, are small (<500 g) and therefore would have depended on insects as their source of protein. As such, they occupied a very different ecological niche from Pondaung amphipithecids. This primate community is then compared with the Eocene-Oligocene primate communities of the Fayum from North Africa. Similarities between the late middle Eocene Pondaung primate community and extant equatorial and tropical South American primate communities are noted.


Assuntos
Dieta , Fósseis , Haplorrinos/anatomia & histologia , Haplorrinos/fisiologia , Animais , Peso Corporal/fisiologia , Esmalte Dentário/anatomia & histologia , Frutas , Mianmar , Folhas de Planta , Dente/anatomia & histologia
15.
J Hum Evol ; 57(6): 732-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19733899

RESUMO

Here we compare dental microwear textures from specimens of the fossil genus Mesopithecus (Cercopithecidae, Colobinae) from the late Miocene of Eastern Europe with dental microwear textures from four extant primate species with known dietary differences. Results indicate that the dental microwear textures of Mesopithecus differ from those of extant leaf eaters Alouatta palliata and Trachypithecus cristatus and instead resemble more closely those of the occasional hard-object feeders Cebus apella and Lophocebus albigena. Microwear texture data presented here in combination with results from previous analyses suggest that Mesopithecus was a widespread, opportunistic feeder that often consumed hard seeds. These data are consistent with the hypothesis that early colobines may have preferred hard seeds to leaves.


Assuntos
Colobinae/psicologia , Esmalte Dentário/ultraestrutura , Dieta , Comportamento Alimentar , Fósseis , Animais , Bulgária , Colobinae/anatomia & histologia , Grécia , Dente Molar/ultraestrutura , Folhas de Planta , Sementes
16.
Naturwissenschaften ; 96(4): 537-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19127354

RESUMO

Extant species of Muridae occupy a wide array of habitats and have diverse dietary habits. Consequently, their dental microwear patterns represent a potential clue to better understand the paleoecology of their extinct relatives, which are abundant in many Old World Neogene localities. In this study, dental microwear is investigated for specimens of 17 extant species of murine and deomyine rodents in order to test the reliability of this method and infer dietary preferences on the fossil species Saïdomys afarensis. This extinct form comes from a mid-Pliocene site (AL 327) located at the Hadar Formation (Ethiopia) known to have delivered many hominid specimens of Australopithecus afarensis. A significant correlation between microwear patterns and diet is detected. Thus, grass, fruit, and insect eaters display, respectively, high amounts of fine scratches, wide scratches, and large pits. Moreover, some aspects of the paleoecology of S. afarensis, including feeding habits, could be assessed in regard to its dental microwear pattern. Indeed, it probably had feeding habits similar to that of living grass eaters. These results concur with the presence of open to woodland areas covered by an herbaceous vegetal layer, including monocotyledons, in the vicinity of this mid-Pliocene locality.


Assuntos
Fósseis , Muridae/fisiologia , Abrasão Dentária/patologia , Dente/anatomia & histologia , Animais , Clima , Dieta , Meio Ambiente , Etiópia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , Dente Molar/anatomia & histologia , Dente Molar/patologia , Muridae/anatomia & histologia , Poaceae
17.
Sci Rep ; 8(1): 14052, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232366

RESUMO

This study aims to explore the feeding ecology of two terrestrial papionins, Papio and Theropithecus from the Shungura Formation in Ethiopia, the most complete stratigraphic and paleontological record of the African Plio-Pleistocene. Two aspects were evaluated using Dental Microwear Texture Analysis: differences in diet between the extinct genera and their extant relatives, and any potential dietary fluctuations over time. Amongst more than 2,500 cercopithecid dental remains, 154 Theropithecus molars and 60 Papio molars were considered. Thirty-nine extant wild baboons and 20 wild geladas were also considered. The results show that diets of extinct monkeys from Member G already differed between genera as it is the case for their extant representatives. The shearing facets on the Theropithecus molars display significant variations in microwear textures, suggesting several dietary shifts over time. Two events point to higher intakes of herbaceous monocots (tougher than dicots foliages), at about 2.91 Ma (between members B and C) and at 2.32 Ma (between members E and F). These two events are separated by an inverse trend at about 2.53 Ma (between members C and D). Some of these variations, such as between members E and F are supported by the enamel carbon isotopic composition of herbivorous mammals and with paleovegetation evidence.


Assuntos
Dieta , Dente Molar/ultraestrutura , Papio/fisiologia , Theropithecus/fisiologia , Animais , Evolução Biológica , Isótopos de Carbono/análise , Etiópia , Extinção Biológica , Fósseis , Herbivoria , Dente Molar/química , Papio/anatomia & histologia , Theropithecus/anatomia & histologia
18.
Ecol Evol ; 8(22): 11359-11362, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519448

RESUMO

A new study by Fraser et al (2018) urges the use of phylogenetic comparative methods, whenever possible, in analyses of mammalian tooth wear. We are concerned about this for two reasons. First, this recommendation may mislead the research community into thinking that phylogenetic signal is an artifact of some sort rather than a fundamental outcome of the evolutionary process. Secondly, this recommendation may set a precedent for editors and reviewers to enforce phylogenetic adjustment where it may unnecessarily weaken or even directionally alter the results, shifting the emphasis of analysis from common patterns manifested by large clades to rare cases.

19.
Ecol Evol ; 6(16): 5559-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547337

RESUMO

While grazing as a selective factor towards hypsodont dentition on mammals has gained a lot of attention, the importance of fruits and seeds as fallback resources for many browsing ungulates has caught much less attention. Controlled-food experiments, by reducing the dietary range, allow for a direct quantification of the effect of each type of items separately on enamel abrasion. We present the results of a dental microwear texture analysis on 40 ewes clustered into four different controlled diets: clover alone, and then three diets composed of clover together with either barley, corn, or chestnuts. Among the seed-eating groups, only the barley one shows higher complexity than the seed-free group. Canonical discriminant analysis is successful at correctly classifying the majority of clover- and seed-fed ewes. Although this study focuses on diets which all fall within a single dietary category (browse), the groups show variations in dental microwear textures in relation with the presence and the type of seeds. More than a matter of seed size and hardness, a high amount of kernels ingested per day is found to be correlated with high complexity on enamel molar facets. This highlights the high variability of the physical properties of the foods falling under the browsing umbrella.

20.
PLoS One ; 8(9): e74463, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040254

RESUMO

BACKGROUND: The equid Hippotherium primigenium, with moderately hypsodont cheek teeth, rapidly dispersed through Eurasia in the early late Miocene. This dispersal of hipparions into the Old World represents a major faunal event during the Neogene. The reasons for this fast dispersal of H. primigenium within Europe are still unclear. Based on its hypsodonty, a high specialization in grazing is assumed although the feeding ecology of the earliest European hipparionines within a pure C3 plant ecosystem remains to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A multi-proxy approach, combining carbon and oxygen isotopes from enamel as well as dental meso- and microwear analyses of cheek teeth, was used to characterize the diet of the earliest European H. primigenium populations from four early Late Miocene localities in Germany (Eppelsheim, Höwenegg), Switzerland (Charmoille), and France (Soblay). Enamel δ(13)C values indicate a pure C3 plant diet with small (<1.4‰) seasonal variations for all four H. primigenium populations. Dental wear and carbon isotope compositions are compatible with dietary differences. Except for the Höwenegg hipparionines, dental microwear data indicate a browse-dominated diet. By contrast, the tooth mesowear patterns of all populations range from low to high abrasion suggesting a wide spectrum of food resources. CONCLUSIONS/SIGNIFICANCE: Combined dental wear and stable isotope analysis enables refined palaeodietary reconstructions in C3 ecosystems. Different H. primigenium populations in Europe had a large spectrum of feeding habits with a high browsing component. The combination of specialized phenotypes such as hypsodont cheek teeth with a wide spectrum of diet illustrates a new example of the Liem's paradox. This dietary flexibility associated with the capability to exploit abrasive food such as grasses probably contributed to the rapid dispersal of hipparionines from North America into Eurasia and the fast replacement of the brachydont equid Anchitherium by the hypsodont H. primigenium in Europe.


Assuntos
Esmalte Dentário/fisiologia , Equidae/fisiologia , Comportamento Alimentar/fisiologia , Fósseis , Herbivoria/fisiologia , Dente/fisiologia , Distribuição Animal , Animais , Isótopos de Carbono , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/química , Dieta , Ecossistema , Equidae/anatomia & histologia , Europa (Continente) , Extinção Biológica , América do Norte , Isótopos de Oxigênio , Filogeografia , Poaceae , Dente/anatomia & histologia , Dente/química , Desgaste dos Dentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA