Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 9(4): e1003432, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637615

RESUMO

Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species.


Assuntos
Opsinas , Filogenia , Animais , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Baleias
2.
Mol Phylogenet Evol ; 91: 178-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26050523

RESUMO

The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean=98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans.


Assuntos
Sirênios/classificação , Animais , Evolução Biológica , Proteínas do Esmalte Dentário/genética , Fósseis , Genes , Filogenia , Análise de Sequência de DNA , Sirênios/anatomia & histologia , Sirênios/genética
3.
BMC Evol Biol ; 13: 20, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23342979

RESUMO

BACKGROUND: Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. RESULTS: We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann's two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. CONCLUSIONS: Our results highlight the power of combining fossil and genomic evidence to decipher macroevolutionary transitions and characterize the functional range of different loci involved in tooth development. The fossil record and phylogenetics combine to predict the occurrence of molecular fossils of tooth-specific genes in the genomes of edentulous amniotes, and in every case these molecular fossils have been discovered. The widespread occurrence of EMP pseudogenes in turtles, birds, and edentulous/enamelless mammals also provides compelling evidence that in amniotes, the only unique, non-redundant function of these genes is in enamel formation.


Assuntos
Proteínas do Esmalte Dentário/genética , Evolução Molecular , Filogenia , Tartarugas/genética , Animais , Aves/genética , Fósseis , Mamíferos/genética , Mutação , Pseudogenes , Répteis/genética , Análise de Sequência de DNA , Sintenia , Dente
4.
Mol Phylogenet Evol ; 66(2): 479-506, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23103570

RESUMO

The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life.


Assuntos
Evolução Biológica , Filogenia , Baleias/classificação , Animais , Fósseis , Paleontologia , Baleias/genética
5.
PLoS Genet ; 5(9): e1000634, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730686

RESUMO

Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of "molecular fossils" of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the "molecular fossil" hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (omega) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory.


Assuntos
Proteínas do Esmalte Dentário/genética , Esmalte Dentário/metabolismo , Evolução Molecular , Fósseis , Mamíferos/genética , Animais , Sequência de Bases , Esmalte Dentário/química , Proteínas do Esmalte Dentário/química , Mamíferos/classificação , Mamíferos/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Alinhamento de Sequência
6.
Proc Biol Sci ; 278(1708): 993-1002, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20861053

RESUMO

Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation.


Assuntos
Esmalte Dentário/fisiologia , Evolução Molecular , Metaloproteinase 20 da Matriz/genética , Dente/fisiologia , Baleias/fisiologia , Animais , Evolução Biológica , Esmalte Dentário/anatomia & histologia , Fósseis , Metaloproteinase 20 da Matriz/metabolismo , Pseudogenes , Elementos Nucleotídeos Curtos e Dispersos , Dente/anatomia & histologia , Baleias/anatomia & histologia
7.
J Hered ; 101(6): 690-702, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20581108

RESUMO

We have used a combined approach of phylogenetics and cytogenetics to describe karyotype evolution in Diprotodontia. Molecular relationships of diprotodontian marsupials have been clarified using a concatenation of 5 nuclear gene sequences from multiple exemplars of all extant genera. Our well-resolved phylogenetic tree has been used as a basis for understanding chromosome evolution both within this Order, as well as in marsupials in general. It is clear that the ancestral marsupial karyotype comprised 14 relatively large chromosomes of the form retained relatively unchanged in caenolestids, microbiotherians, peramelemorphians, vombatids, and pygmy possums. Four pericentric inversions occurred in the ancestral dasyuromorphian (chromosomes 1, 2, 4, and 6) and a different 4 in the ancestral didelphimorphian (chromosomes 1, 3, 5 and 6). Within Diprotodontia, although the ancestral marsupial karyotype has been retained in some families such as the extant wombats and pygmy possums, there have been major karytoypic repatternings early in the evolution of others. Chromosome rearrangements in diprotodontia include centric fissions and fusions, translocations, and centromere shifts. Karyotypic changes are discussed in the context of current hypotheses concerning centromeres, chromosomal fragile sites, and mobile elements in marsupials and the probable repeated involvement of these elements in karyotypic restructuring.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Cariotipagem , Marsupiais/classificação , Marsupiais/genética , Animais , Sequência de Bases , Teorema de Bayes , Evolução Biológica , Centrômero , Aberrações Cromossômicas , Sítios Frágeis do Cromossomo , Análise Citogenética , Fluxo Gênico , Deriva Genética , Marcadores Genéticos , Variação Genética , Incisivo , Sequências Repetitivas Dispersas , Marsupiais/anatomia & histologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Science ; 346(6215): 1254390, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25504730

RESUMO

Edentulism, the absence of teeth, has evolved convergently among vertebrates, including birds, turtles, and several lineages of mammals. Instead of teeth, modern birds (Neornithes) use a horny beak (rhamphotheca) and a muscular gizzard to acquire and process food. We performed comparative genomic analyses representing lineages of nearly all extant bird orders and recovered shared, inactivating mutations within genes expressed in both the enamel and dentin of teeth of other vertebrate species, indicating that the common ancestor of modern birds lacked mineralized teeth. We estimate that tooth loss, or at least the loss of enamel caps that provide the outer layer of mineralized teeth, occurred about 116 million years ago.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Aves/genética , Esmalte Dentário , Dentina , Genoma , Mutação , Vertebrados/genética , Jacarés e Crocodilos/genética , Animais , Aves/classificação , Evolução Molecular , Fósseis , Genômica , Mamíferos/genética , Filogenia , Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA