Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Orthod Craniofac Res ; 27(2): 313-320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38010840

RESUMO

OBJECTIVES: The aim of this study is to investigate the neurovascular bundle (NVB) as a potential orthodontic relapse factor. The mechanical properties and the forces generated in the NVB after orthodontic extrusion are explored. MATERIALS AND METHODS: Six NVBs branching from the inferior alveolar nerve to the apices of the mandibular canines and premolars of mature pigs were harvested. Stress relaxation tests were conducted. A standard linear solid model (SLS) was utilized to simulate the orthodontic extrusion of a single rooted tooth with NVB length and cross-sectional diameter of 3.6 and 0.5 mm, respectively, so the NVB was stretched 10% and 20% of its original length. The maximum force within the NVB was then calculated. RESULTS: Based on our data, the average Young's modulus before relaxation ( E 0 ), after relaxation ( E P ) and the difference between Young's moduli before and after relaxation ( E S ) were 324 ± 123, 173 ± 73 and 151 ± 52 kPa, respectively. The theoretical force within the NVB stretched to 10% and 20% strain was 3 and 5 mN, respectively. CONCLUSION: The data from our study indicate that the NVB exhibits stress relaxation, a characteristic trait of viscoelastic materials. SLS model simulation predicted residual forces around 5 mN for elongation up to 20%. We observed strain hardening with additional elongation, which has the potential to cause forces to increase exponentially. Therefore, tensile forces in the NVB should not be ruled out as a contributor to orthodontic relapse, especially in adult patients who may have decreased adaptability of their NVB. Further preclinical and clinical models should be developed to further clarify what is the contribution of the NVB to orthodontic relapse.


Assuntos
Ortodontia Corretiva , Animais , Suínos , Recidiva , Nervo Mandibular , Dente , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 112(37): 11502-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330605

RESUMO

Hierarchically designed structures with architectural features that span across multiple length scales are found in numerous hard biomaterials, like bone, wood, and glass sponge skeletons, as well as manmade structures, like the Eiffel Tower. It has been hypothesized that their mechanical robustness and damage tolerance stem from sophisticated ordering within the constituents, but the specific role of hierarchy remains to be fully described and understood. We apply the principles of hierarchical design to create structural metamaterials from three material systems: (i) polymer, (ii) hollow ceramic, and (iii) ceramic-polymer composites that are patterned into self-similar unit cells in a fractal-like geometry. In situ nanomechanical experiments revealed (i) a nearly theoretical scaling of structural strength and stiffness with relative density, which outperforms existing nonhierarchical nanolattices; (ii) recoverability, with hollow alumina samples recovering up to 98% of their original height after compression to ≥ 50% strain; (iii) suppression of brittle failure and structural instabilities in hollow ceramic hierarchical nanolattices; and (iv) a range of deformation mechanisms that can be tuned by changing the slenderness ratios of the beams. Additional levels of hierarchy beyond a second order did not increase the strength or stiffness, which suggests the existence of an optimal degree of hierarchy to amplify resilience. We developed a computational model that captures local stress distributions within the nanolattices under compression and explains some of the underlying deformation mechanisms as well as validates the measured effective stiffness to be interpreted as a metamaterial property.


Assuntos
Teste de Materiais/métodos , Resistência à Tração , Algoritmos , Óxido de Alumínio/química , Cerâmica , Força Compressiva , Simulação por Computador , Desenho Assistido por Computador , Fractais , Dureza , Nanoestruturas/química , Nanotecnologia , Polímeros/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA