Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 205: 111095, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827962

RESUMO

The widespread existence of microplastics in wastewater has caused great concern. As the exposure time of microplastics in the environment increases, the microplastic leaching solution (i.e.,chemical additives) may be released into the environment causing toxic effects. In this study, the effect of polystyrene (PS) microplastics on the anaerobic digestion system was investigated. The results showed that the exposure to 80 nm and 5 µm polystyrene microplastics with the concentrations of 0.2 g/L or lower did not significantly affect the cumulative methane production (P ≥ 0.05). On the other hand, 80 nm and 5 µm PS microplastic level of 0.25 g/L led to a decrease in methane production by 19.3% (P = 2 × 10-5) and 17.9% (P = 4 × 10-5), respectively. The 80 nm PS nanoplastics therefore had slightly higher inhibition capacity on methane production than 5 µm PS microplastics. The pH of all groups remained stable at 6.7-7.5. Volatile fatty acids (VFAs) concentration and ammonium-nitrogen concentration had no obvious relationship to PS micro and nanoplastics addition. Further investigation showed that PS micro and nanoplastics concentration of 0.25 g/L or higher could inhibit acidification and methanation stage of anaerobic digestion. However, the main negative influence of PS micro and nanoplastics on methane production was due to the severe inhibition on the methanization stage.


Assuntos
Microplásticos , Poliestirenos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Metano , Plásticos , Águas Residuárias
2.
Appl Microbiol Biotechnol ; 102(8): 3819-3830, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29511848

RESUMO

Using lignocellulosic materials as substrates, ruminal microbiota were co-inoculated with anaerobic sludge at different loading rates (LR) to study the microbial community in the semi-continuous mode. The results indicated that the highest CH4 yield reached 0.22 L/g volatile solid at LR of 4 g/L/day, which obtained 56-58% of the theoretical value. In the steady stage with LR of 2-4 g/L/day and slurry recirculation, copies of total archaea increased. Especially the Methanobacteriales increased significantly (p < 0.05) to 3.30 × 108 copies/mL. The microbial communities were examined by MiSeq 16S rRNA sequencing. Enriched hydrolytic bacteria mainly belonged to Clostridiales, including Ruminococcus, Ruminiclostridium, and Ruminofilibacter settled in the rumen. High-active cellulase and xylanase were excreted in the co-inoculated system. Acid-producing bacteria by fermentation were affiliated with Lachnospiraceae and Bacteroidales. The acidogen members were mainly Spirochaetaceae and Clostridiales. Syntrophic oxidation bacteria mainly consisted of Synergistetes, propionate oxidizers (Syntrophobacter and Pelotomaculum), and butyrate oxidizers (Syntrophus and Syntrophomonas). There had no volatile fatty acid (VFA) accumulation and the pH values varied between 6.94 and 7.35. At LR of 6 g/L/day and a recirculation ratio of 1:1, the hardly degradable components and total VFA concentrations obviously increased. The total archaea and Methanobacteriales then deceased significantly to 8.56 × 105 copies/mL and 4.14 × 103 copies/mL respectively (p < 0.05), which resulted in the inhibition of methanogenic activities. Subsequently, microbial diversity dropped, and the hydrolytic bacteria and syntrophic oxidizers obviously decreased. In contrast, the abundances of Bacteroidales increased significantly (p < 0.05). Acetate, propionate, and butyrate concentrations reached 2.02, 6.54, and 0.53 g/L, respectively, which indicated "acidification" in the anaerobic reactor. Our study illustrated that co-inoculated anaerobic sludge enriched the ruminal function consortia and hydrogenotrophic methanogens played an important role in anaerobic digestion of lignocelluloses.


Assuntos
Fenômenos Fisiológicos Bacterianos , Euryarchaeota/fisiologia , Consórcios Microbianos/fisiologia , Rúmen/microbiologia , Anaerobiose , Animais , Archaea/crescimento & desenvolvimento , Archaea/fisiologia , Bactérias/classificação , Euryarchaeota/genética , Lignina/metabolismo , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Esgotos/microbiologia
3.
J Hazard Mater ; 474: 134767, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820757

RESUMO

Ecological risk of micro/nano-plastics (MPs/NPs) has become an important environmental issue. Microcystin-leucine-arginine (MC-LR) produced by Microcystis aeruginosa (M. aeruginosa) is the most common and toxic secondary metabolites (SM). However, the influencing mechanism of MPs and NPs exposure on MC-LR synthesis and release have still not been clearly evaluated. In this work, under both acute (4d) and long-term exposure (10d), only high-concentration (10 mg/L) exposure of amino-modified polystyrene NPs (PS-NH2-NPs) promoted MC-LR synthesis (32.94 % and 42.42 %) and release (27.35 % and 31.52 %), respectively. Mechanistically, PS-NH2-NPs inhibited algae cell density, interrupted pigment synthesis, weakened photosynthesis efficiency, and induced oxidative stress, with subsequent enhancing the MC-LR synthesis. Additionally, PS-NH2-NPs exposure up-regulated MC-LR synthesis pathway genes (mcyA, mcyB, mcyD, and mcyG) combined with significantly increased metabolomics (Leucine and Arginine), thereby enhancing MC-LR synthesis. PS-NH2-NPs exposure enhanced the MC-LR release from M. aeruginosa via up-regulated MC-LR transport pathway genes (mcyH) and the shrinkage of plasma membrane. Our results provide new insights into the long-time coexistence of NPs with algae in freshwater systems might pose a potential threat to aquatic environments and human health.


Assuntos
Toxinas Marinhas , Microcistinas , Microcystis , Poliestirenos , Microcystis/metabolismo , Microcystis/efeitos dos fármacos , Microcistinas/metabolismo , Microcistinas/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Arginina/química , Arginina/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Microplásticos/toxicidade
4.
Bioresour Technol ; 267: 363-370, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30031274

RESUMO

PTFE hollow fiber anaerobic membrane bio-reactor (AnMBR) performance was investigated in the treatment of organic wastewater, with varying salinity and PTFE membrane cleaning behavior. The AnMBR was operated for 226 days, with a total and biological COD removal efficiency of 97.2% and 89.9% respectively, at a NaCl concentration of 35 g L-1. A high number of Proteobacteria (38.2%) and Bacteroidetes (25.9%) were present in the system, with an increase in membrane fouling rate from 1.88 × 1011 to 2.63 × 1011 m-1 d-1 with higher salinity. The effects of soluble microbial products (SMP), extracellular polymeric substances (EPS), low molecular-weight (LMW) carbohydrates, sludge particle size and inorganic element accumulation, were evaluated on membrane fouling. Flux recovery of fouled PTFE membranes reached 91.6% with offline cleaning. Overall, results indicate that PTFE hollow fiber AnMBR provides a promising method for the treatment of saline organic wastewater.


Assuntos
Politetrafluoretileno , Salinidade , Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Esgotos , Purificação da Água
5.
Bioresour Technol ; 193: 234-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26141283

RESUMO

The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs.


Assuntos
Filtração/instrumentação , Esgotos/química , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Purificação da Água/instrumentação , Anaerobiose , Reatores Biológicos , Filtração/métodos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA