RESUMO
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
Assuntos
Nervo Coclear/fisiologia , Células-Tronco Embrionárias/citologia , Nanofibras , Regeneração Nervosa/fisiologia , Neurônios/citologia , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Tronco Encefálico/fisiologia , Diferenciação Celular , Transplante de Células , Surdez/terapia , Feminino , Proteínas de Fluorescência Verde/genética , Cobaias , Humanos , MasculinoRESUMO
The influence of noise exposure on the endothelial transport system in the cochlea was investigated using cationic polyethyleneimine (PEI), since systemically administered PEI passes through the capillary endothelial cell and attaches to basal lamina (BL) anionic sites in the cochlea. Under general anesthesia, all guinea pigs were administered an intravenous injection of 0.5% PEI. Thirty minutes later, five animals were exposed to noise (10 kHz, broad band noise, 105 dB SPL) for 30 min, via speakers inserted into the external auditory canal. The remaining five animals (controls) were left without noise exposure for 1 h following PEI injection. All guinea pigs were then immediately sacrificed, and the bony labyrinths were removed. PEI distribution on the BL was assessed in the stria vascularis, spiral ligament, basilar membrane, spiral limbus and Reissner's membrane throughout the cochlea with transmission electron microscopy. Compared to control animals, PEI distribution in the noise-exposed animals was significantly increased in the strial vessels of the basal and second turns and in Reissner's membrane of all turns. In the spiral ligament, basilar membrane and spiral limbus, no significant difference in PEI distribution was observed between the control and noise-exposed animals. These findings indicate that noise exposure increases macromolecular transport in the stria vascularis but not in the spiral ligament, spiral limbus and basilar membrane and that systemically administered macromolecules are more readily transported to Reissner's membrane by noise exposure.