Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(18): e2200043, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35279035

RESUMO

Upcycling waste plastics into advanced semiconductor photocatalysts provides a new strategy to reasonably and economically solve the huge amount of waste plastics, which remains challenging. Herein, a carbon nitride-based donor-acceptor (D-A) conjugated copolymer by copolymerization of dicyandiamide and terephthalic acid from discarded polyethylene terephthalate (PET) using Zn(OH)2 as catalyst and template at 360-440 °C is synthesized. The morphology and structure of the conjugated copolymer are well regulated by the calcination temperature. The resultant conjugated copolymer exhibits merits of high light absorption and low electron-hole recombination probability. Consequently, it works excellently in the persulfate-based advanced oxidation process for visible light-driven photocatalytic degradation of tetracycline. The kinetic constant (3.4 × 10-2  min-1 ) is 40.5 and 2.3 times that of the conjugated copolymer system and persulfate system, respectively. Furthermore, the reactive species (including •OH, SO4 •- , •O2 - , 1 O2 , and h+ ) and degradation intermediates of tetracycline are analyzed to expound its degradation process. This work not only pioneers design guidelines on upcycling of waste plastics in a sustainable manner, but also provides a facile strategy to synthesize carbon nitride-based D-A conjugated copolymers for the efficient activation of persulfate-based advanced oxidation process in wastewater treatment.


Assuntos
Polietilenotereftalatos , Tetraciclina , Antibacterianos , Catálise , Nitrilas/química , Plásticos , Polímeros/química
2.
Chemosphere ; 340: 139865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598943

RESUMO

Disposable aluminum cans and plastic bottles are common wastes found in modern societies. This article shows that they can be upcycled into functional materials, such as metal-organic frameworks and hierarchical porous carbon nanomaterials for high-value applications. Through a solvothermal method, used poly(ethylene terephthalate) bottles and aluminum cans are converted into MIL-53(Al). Subsequently, the as-prepared MIL-53(Al) can be further carbonized into a nitrogen-doped (4.52 at%) hierarchical porous carbon framework. With an optical amount of urea present during the carbonization process, the carbon nanomaterial of a high specific surface area of 1324 m2 g-1 with well-defined porosity can be achieved. These features allow the nitrogen-doped hierarchical porous carbon to perform impressively as the working electrode of supercapacitors, delivering a high specific capacitance of 355 F g-1 at 0.5 A g-1 in a three-electrode cell and exhibiting a high energy density of 20.1 Wh kg-1 at a power density of 225 W kg-1, while simultaneously maintaining 88.2% capacitance retention over 10,000 cycles in two-electrode system. This work demonstrates the possibility of upcycling wastes to obtain carbon-based high-performance supercapacitors.


Assuntos
Alumínio , Carbono , Porosidade , Nitrogênio , Plásticos
3.
Chemosphere ; 253: 126755, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464775

RESUMO

Polystyrene (PS) is usually discarded as a solid waste after a short lifespan. Thus the disposal of waste PS is an inevitably worldwide issue because of their stable and non-biodegradable nature. Herein, a facile method was proposed to carbonize PS waste into novel three-dimensional (3D) hierarchically porous carbon using Fe2O3 particles as both catalyst and template. Furthermore, KOH activation was applied to generate microporous and mesopores on the wall of macropores. As a result, the obtained 3D hierarchically porous carbon exhibits a high specific capacitance of 284.1 F g-1 at 0.5 A g-1 and good rate performance of 198 F g-1 at 20 A g-1 in a three-electrode device. Moreover, the assembled symmetrical capacitor displays a high energy density of 19.2 W h kg-1 at the power density of 200.7 W kg-1 in aqueous electrolyte. Therefore, the present research develops a sustainable way to recycle waste plastics into 3D hierarchically porous carbon for supercapacitors.


Assuntos
Poliestirenos/química , Carbono , Capacitância Elétrica , Eletrodos , Eletrólitos , Plásticos , Porosidade , Água
4.
Waste Manag ; 85: 333-340, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803588

RESUMO

Due to white pollution related environmental concern and sustainable development requirement, it is desirable to recycle the widely used plastic wastes into products with commercial value, such as high-valued carbon materials which can be applied in electrochemical fields. In this work, porous carbon flakes (PCFs) are produced by direct pyrolysis of polystyrene waste through template method. Furthermore, manganese dioxide (MnO2) nanosheets are selectively deposited on the surface of resultant PCFs to form hybrid (PCF-MnO2). Because of the large specific surface area (1087 m2/g) and high conductivity of PCFs, native high specific capacity of MnO2, and positive synergistic interaction between PCF and MnO2, the resulting hybrid materials show an ultrahigh capacitance of 308 F/g at 1 mV/s and 247 F/g at 1 A/g in LiCl electrolyte, and excellent cycle stability of 93.4% capacitance retention over 10,000 cycles at 10 A/g in symmetric supercapacitor device. This work demonstrates a convenient method for the preparation of cost-effective and high-performance electrode material for electric capacitor. More importantly, it provides a potential way to recycle polystyrene waste into high-valued product in large-scale with disposing of polymeric waste to alleviate environmental concerns.


Assuntos
Carbono , Poliestirenos , Capacitância Elétrica , Eletrodos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA