Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 189(10): 399, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36178521

RESUMO

Magnetic molecular imprinted polymers (MIPs) based on 4-vinylbenzyltrimethylammonium chloride (VBTAC) and 4-vinylbenzoic acid (VBA) deep eutectic solvent as dual functional monomers was successfully synthesized for the specific recognition of laminarin. The MIPs were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometer analysis. The results showed that the MIPs were spheres of a uniform size, with the surface rich in cavities and excellent superparamagnetism properties. The adsorption experiments showed that MIPs conform to pseudo-second-order kinetics and Langmuir isotherm adsorption. The maximum adsorption capacity under optimal conditions was 322.58 µg·mg-1 and the imprinting factor was 2.13. Under the optimized conditions, the limit of detection (LOD) of the developed material was 6.6 µM. Linearity of the material was obtained within the range 20-800 µM with a coefficient of determination (r2) being better 0.999. Relative standard deviations (RSDs) were less than 3.96%, and satisfactory recoveries were between 94.55 and 97.39%. The actual sample analysis manifested that MIPs could effectively separate laminarin from Laminarin japonica Aiesch.


Assuntos
Impressão Molecular , Alga Marinha , Cloretos , Solventes Eutéticos Profundos , Glucanos , Fenômenos Magnéticos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Polímeros/química , Solventes/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-34224966

RESUMO

In this work, a novel strategy was developed for separation and enrichment of sibiskoside by dummy molecular imprinting technology and magnetic separation technology. The structural analogue geniposide was selected as the dummy template, using 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, and acetonitrile as the porogen. The molecularly imprinted layer was formed on the surface of the magnetic carrier to prepare dummy template molecularly imprinted polymers (DMIPs) with a core-shell structure. The DMIPs were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and Vibration sample magnetometer (VSM). The results of adsorption kinetics experiments and isothermal adsorption experiments showed that DMIPs can reach adsorption equilibrium in a short period of time and the maximum adsorption capacity can reach 14.67 mg/g. The imprinting factor was 2.08. Compared with the andrographolide, polydatin, arbutin, caffeic acid, neohesperidin dihydrochalcone and quercetin, DMIPs have good adsorption capacity for the sibiskoside. And the reusability was better. After the adsorption of DMIPs, the purity of sibiskoside in the crude extracts from Sibiraea angustata increased to 78%. It provided a basis for the further development and utilization of Sibiraea angustata as well as the separation and enrichment of monoterpenes.


Assuntos
Monoterpenos Acíclicos , Glicosídeos , Nanopartículas de Magnetita/química , Polímeros Molecularmente Impressos/química , Rosaceae/química , Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão , Glicosídeos/análise , Glicosídeos/química , Glicosídeos/isolamento & purificação , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA