Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ChemSusChem ; 8(2): 361-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25470445

RESUMO

A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface.


Assuntos
Ligas/química , Níquel/química , Oxigênio/química , Platina/química , Titânio/química , Catálise , Corrosão , Eletroquímica , Modelos Moleculares , Conformação Molecular , Oxirredução
2.
ACS Nano ; 7(12): 11004-15, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24191681

RESUMO

We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na(+). By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g(-1) (after 10 cycles, 50 mA g(-1)), with ∼150 mAh g(-1) of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g(-1) at the 210th cycle, stable capacity of 203 mAh g(-1) at 500 mA g(-1)).


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono/química , Sódio/química , Sphagnopsida , Biomassa , Carbono/química , Difusão , Eletroquímica , Eletrodos , Eletrólitos , Grafite/química , Íons , Lítio/química , Nanotecnologia , Polímeros/química , Solo , Sphagnopsida/química , Sphagnopsida/citologia , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA