Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 90(19): 11179-11182, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30175583

RESUMO

A new type of turn-on electrochemical protein detection is developed using an electropolymerizable molecular probe. To detect trypsin, a benzamidine ligand is conjugated with a thiophene moiety. Encapsulation of the probe in the trypsin pocket prevents electropolymerization, leading to efficient electron transfer from the electrolyte to the electrode. In contrast, unbound probes can become electropolymerized, yielding a polythiophene layer on the electrode. The polythiophene formed this way suppressed electron transfer. The detection limit of trypsin using this electrochemical strategy is 50 nM. The method is shown to be useful for nonenzymatic turn-on electrochemical detection.


Assuntos
Sondas Moleculares/química , Polímeros/química , Tiofenos/química , Tripsina/análise , Eletroquímica , Eletrodos , Ligantes , Polimerização , Tripsina/química
2.
Angew Chem Int Ed Engl ; 55(38): 11447-51, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27383212

RESUMO

The generation of metal surfaces with biological properties, such as cell-growth-enhancing and differentiation-inducing abilities, could be potentially exciting for the development of functional materials for use in humans, including artificial dental implants and joint replacements. However, currently the immobilization of proteins on the surfaces of the metals are limited. In this study, we have used a mussel-inspired bioorthogonal approach to design a 3,4-hydroxyphenalyalanine-containing recombinant insulin-like growth-factor-1 using a combination of recombinant DNA technology and tyrosinase treatment for the surface modification of titanium. The modified growth factor prepared in this study exhibited strong binding affinity to titanium, and significantly enhanced the growth of NIH3T3 cells on the surface of titanium.


Assuntos
Fator de Crescimento Insulin-Like I/química , Monofenol Mono-Oxigenase/metabolismo , Titânio/química , Sequência de Aminoácidos , Animais , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Proteínas Imobilizadas/análise , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Células NIH 3T3 , Técnicas de Microbalança de Cristal de Quartzo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Propriedades de Superfície , Espectrometria de Massas em Tandem , Titânio/metabolismo
3.
Int J Biol Macromol ; 271(Pt 1): 132333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754686

RESUMO

The fabrication of scaffolds capable of the sustained release of the vascular endothelial growth factor (VEGF) to promote angiogenesis for a long time remains a challenge in tissue engineering. Here, we report a facile approach for effectively fabricating a bioactive scaffold that gradually releases VEGF to promote angiogenesis. The scaffold was fabricated by coating polydopamine (PDA) on a konjac glucomannan (KGM) scaffold, followed by the surface immobilization of VEGF with PDA. The resulting VEGF-PDA/KGM scaffold, with a porous and interconnected microstructure (392 µm pore size with 84.80 porosity), combined the features of long-term biodegradability (10 weeks with 51 % degradation rate), excellent biocompatibility, and sustained VEGF release for up to 21 days. The bioactive VEGF-PDA/KGM scaffold exhibited multiple angiogenic activities over time, as confirmed by in vivo and in vitro experiments. For example, the scaffold significantly promoted the attachment and proliferation of human umbilical vein endothelial cells and the formation of vascular tubes in vitro. Moreover, the in vivo results demonstrated the formation and maturation of blood vessels after subcutaneous implantation in rats for four weeks. This promising strategy is a feasible approach for producing bioactive materials that can induce angiogenesis in vivo. These findings provide a new avenue for designing and fabricating biocompatible and long-term biodegradable scaffolds for sustained VEGF release to facilitate angiogenesis.


Assuntos
Preparações de Ação Retardada , Células Endoteliais da Veia Umbilical Humana , Indóis , Mananas , Neovascularização Fisiológica , Polímeros , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Indóis/química , Indóis/farmacologia , Polímeros/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Mananas/química , Mananas/farmacologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alicerces Teciduais/química , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Preparações de Ação Retardada/farmacologia , Ratos , Porosidade , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Liberação Controlada de Fármacos , Masculino , Angiogênese
4.
J Mater Chem B ; 12(12): 3006-3014, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451210

RESUMO

Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.


Assuntos
Regeneração Óssea , Titânio , Ratos , Animais , Humanos , Titânio/farmacologia , Próteses e Implantes , Osteogênese , Osseointegração
5.
Int J Biol Macromol ; 264(Pt 2): 130568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447822

RESUMO

Polysaccharide based self-healing and injectable hydrogels with reversible characteristics have widespread potential in protein drug delivery. However, it is a challenge to design the dynamic hydrogel for sequential release of protein drugs. Herein, we developed a novel mussel inspired sequential protein delivery dynamic polysaccharide hydrogel. The nanocomposite hydrogel can be fabricated through doping polydopamine nanoparticles (PDA NPs) into reversible covalent bond (imine bonds) crosslinked polymer networks of oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CEC), named PDA NPs@OHA-l-CEC. Besides multiple capabilities (i.e., injection, self-healing, and biodegradability), the nanocomposite hydrogel can achieve sustained and sequential protein delivery of vascular endothelial growth factor (VEGF) and bovine serum albumin (BSA). PDA NPs doped in hydrogel matrix serve dual roles, acting as secondary protein release structures and form dynamic non-covalent interactions (i.e., hydrogen bonds) with polysaccharides. Moreover, by adjusting the oxidation degree of OHA, the hydrogels with different crosslinking density could control overall protein release rate. Analysis of different release kinetic models revealed that Fickian diffusion drove rapid VEGF release, while the slower BSA release followed a Super Case II transport mechanism. The novel biocompatible system achieved sequential release of protein drugs has potentials in multi-stage synergistic drug deliver based on dynamic hydrogel.


Assuntos
Quitosana , Fator A de Crescimento do Endotélio Vascular , Nanogéis , Fator A de Crescimento do Endotélio Vascular/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Quitosana/química , Polissacarídeos/química , Ácido Hialurônico/química , Soroalbumina Bovina
6.
Carbohydr Polym ; 330: 121812, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368083

RESUMO

Biomacromolecules based injectable and self-healing hydrogels possessing high mechanical properties have widespread potential in biomedical field. However, dynamic features are usually inversely proportional to toughness. It is challenging to simultaneously endow these properties to the dynamic hydrogels. Here, we fabricated an injectable nanocomposite hydrogel (CS-NPs@OSA-l-Gtn) stimultaneously possessing excellent autonomous self-healing performance and high mechanical strength by doping chitosan nanoparticles (CS-NPs) into dynamic polymer networks of oxidized sodium alginate (OSA) and gelatin (Gtn) in the presence of borax. The synergistic effect of the multiple reversible interactions combining dynamic covalent bonds (i.e., imine bond and borate ester bond) and noncovalent interactions (i.e., electrostatic interaction and hydrogen bond) provide effective energy dissipation to endure high fatigue resistance and cyclic loading. The dynamic hydrogel exhibited excellent mechanical properties like maximum 2.43 MPa compressive strength, 493.91 % fracture strain, and 89.54 kJ/m3 toughness. Moreover, the integrated hydrogel after injection and self-healing could withstand 150 successive compressive cycles. Besides, the bovine serum albumin embedded in CS-NPs could be sustainably released from the nanocomposite hydrogel for 12 days. This study proposes a novel strategy to synthesize an injectable and self-healing hydrogel combined with excellent mechanical properties for designing high-strength natural carriers with sustained protein delivery.


Assuntos
Alginatos , Quitosana , Alginatos/química , Nanogéis , Gelatina/química , Hidrogéis/química , Polímeros , Quitosana/química
7.
J Mater Chem B ; 8(44): 10162-10171, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33095222

RESUMO

Monoclonal antibodies have been developed as anticancer agents to block immune checkpoint pathways associated with programmed cell death 1 (PD-1) and its ligand PD-L1. However, the high cost of antibodies has encouraged researchers to develop other inhibitor types. Here, biphenyl compounds were conjugated with poly(ethylene glycol) (PEG) to enhance the activity of small molecular inhibitors. Immunoassay results revealed the decrease in the inhibition activity following conjugation with linear PEG, suggesting that the PEG moiety reduced the interaction between the biphenyl structure and PD-L1. However, the inhibitory effect on PD-1/PD-L1 interaction was further enhanced by using branched PEG conjugates. The increase in the number of conjugated biphenyl compounds resulted in increased inhibitory activity. The highest IC50 value was 0.33 µM, which was about 5 times higher than that observed for a non-conjugated monovalent compound. The inhibitory activity was more than 20 times the activity reported for the starting compound. Considering the increase in the inhibition activity, this multivalent strategy can be useful in the design of new immune checkpoint inhibitors.


Assuntos
Antígeno B7-H1/metabolismo , Compostos de Bifenilo/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Polietilenoglicóis/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Células Jurkat , Simulação de Acoplamento Molecular/métodos , Polietilenoglicóis/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA