Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 123(5): 2049-2111, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36692900

RESUMO

Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.


Assuntos
Biotecnologia , Proteômica , Indústrias , Polímeros , Biologia Sintética
2.
Biomacromolecules ; 25(8): 5048-5057, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39025475

RESUMO

Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and ß-1,3-glucan synthesis using 2-nitrophenyl ß-d-glucopyranoside, 4-nitrophenyl ß-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl ß-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus ß-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and ß-1,3-glucan.


Assuntos
Celulose , Glucosiltransferases , beta-Glucanas , Celulose/química , beta-Glucanas/química , beta-Glucanas/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Clostridium thermocellum/enzimologia , Fosforilases/metabolismo , Fosforilases/química
3.
Small ; 17(27): e2005205, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33491913

RESUMO

Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.


Assuntos
Ouro , Metilcelulose , Celulose , Módulo de Elasticidade , Fibras Ópticas
4.
Biomacromolecules ; 22(2): 690-700, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33406825

RESUMO

Liquid-liquid phase separation of biomacromolecules is crucial in various inter- and extracellular biological functions. This includes formation of condensates to control, e.g., biochemical reactions and structural assembly. The same phenomenon is also found to be critically important in protein-based high-performance biological materials. Here, we use a well-characterized model triblock protein system to demonstrate the molecular level formation mechanism and structure of its condensate. Large-scale molecular modeling supported by analytical ultracentrifuge characterization combined with our earlier high magnification precision cryo-SEM microscopy imaging leads to deducing that the condensate has a bicontinuous network structure. The bicontinuous network rises from the proteins having a combination of sites with stronger mutual attraction and multiple weakly attractive regions connected by flexible, multiconfigurational linker regions. These attractive sites and regions behave as stickers of varying adhesion strength. For the examined model triblock protein construct, the ß-sheet-rich end units are the stronger stickers, while additional weaker stickers, contributing to the condensation affinity, rise from spring-like connections in the flexible middle region of the protein. The combination of stronger and weaker sticker-like connections and the flexible regions between the stickers result in a versatile, liquid-like, self-healing structure. This structure also explains the high flexibility, easy deformability, and diffusion of the proteins, decreasing only 10-100 times in the bicontinuous network formed in the condensate phase in comparison to dilute protein solution. The here demonstrated structure and condensation mechanism of a model triblock protein construct via a combination of the stronger binding regions and the weaker, flexible sacrificial-bond-like network as well as its generalizability via polymer sticker models provide means to not only understand intracellular organization, regulation, and cellular function but also to identify direct control factors for and to enable engineering improved protein and polymer constructs to enhance control of advanced fiber materials, smart liquid biointerfaces, or self-healing matrices for pharmaceutics or bioengineering materials.


Assuntos
Engenharia de Proteínas , Seda , Difusão , Modelos Moleculares , Polímeros
5.
Biomacromolecules ; 21(10): 4355-4364, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32960595

RESUMO

In nature, various organisms produce cellulose as microfibrils, which are processed into their nano- and microfibrillar and/or crystalline components by humans in order to obtain desired material properties. Interestingly, the natural synthesis machinery can be circumvented by enzymatically synthesizing cellulose from precursor molecules in vitro. This approach is appealing for producing tailor-made cellulosic particles and materials because it enables optimization of the reaction conditions for cellulose synthesis in order to generate particles with a desired morphology in their pure form. Here, we present enzymatic cellulose synthesis catalyzed by the reverse reaction of Clostridium thermocellum cellodextrin phosphorylase in vitro. We were able to produce cellulose II nanofibril networks in all conditions tested, using varying concentrations of the glycosyl acceptors d-glucose or d-cellobiose (0.5, 5, and 50 mM). We show that shorter cellulose chains assemble into flat ribbon-like fibrils with greater diameter, while longer chains assemble into cylindrical fibrils with smaller diameter.


Assuntos
Celulose , Clostridium thermocellum , Glucosiltransferases , Catálise , Nanofibras
6.
Biomacromolecules ; 18(3): 898-905, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28199100

RESUMO

We present an efficient approach to develop cellulose nanocrystal (CNC) hybrids with magnetically responsive Fe3O4 nanoparticles that were synthesized using the (Fe3+/Fe2+) coprecipitation. After 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-catalyzed oxidation of CNC, carbodiimide (EDC/NHS) was used for coupling amine-containing iron oxide nanoparticles that were achieved by dopamine ligand exchange (NH2-Fe3O4 NPs). The as-prepared hybrids (Fe3O4@CNC) were further complexed with Cu(II) ions to produce specific protein binding sites. The performance of magnetically responsive Cu-Fe3O4@CNC hybrids was assessed by selectively separating lysozyme from aqueous media. The hybrid system displayed a remarkable binding capacity with lysozyme of 860.6 ± 14.6 mg/g while near full protein recovery (∼98%) was achieved by simple elution. Moreover, the regeneration of Fe3O4@CNC hybrids and efficient reutilization for protein separation was demonstrated. Finally, lysozyme separation from matrices containing egg white was achieved, thus revealing the specificity and potential of the presented method.


Assuntos
Celulose/química , Nanopartículas de Magnetita/química , Proteínas/química , Catálise , Óxidos N-Cíclicos/química , Muramidase/metabolismo , Oxirredução/efeitos dos fármacos
7.
Adv Mater ; 33(42): e2102658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467572

RESUMO

Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact-resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self-assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self-assembly and engineering of its constitutive protein building blocks.


Assuntos
Celulose/química , Nanopartículas/química , Engenharia de Proteínas , Animais , Materiais Biocompatíveis/química , Biomineralização , Decápodes/metabolismo , Implantes Dentários , Módulo de Elasticidade , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
8.
Sci Adv ; 5(9): eaaw2541, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31548982

RESUMO

Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into ß sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.


Assuntos
Materiais Biomiméticos/química , Celulose/química , Seda/química , Engenharia de Proteínas , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA