Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Prosthodont ; 33(4): 330-339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37527556

RESUMO

PURPOSE: To characterize the microbiome composition in peri-implant pocket of peri-implantitis and peri-implant sulcus controls using 16S rRNA gene sequencing. MATERIALS AND METHODS: In this controlled clinical cross-sectional study, 23 subjects with control implants (n = 14) and diseased implants (peri-implantitis, n = 21) were included. The peri-implant pocket/sulcus was sampled and used to extract DNA and amplify the 16S rRNA gene using universal primers targeting the V3-V4 regions. The resulting 16S PCR amplicons were sequenced on Illumina MiSeq, and the sequences were processed using DADA2 and the Human Oral Microbiome Database (HOMD) as references. Alpha and Beta diversity, as well as core microbiome and differential abundance analyses, were performed using the MicrobiomeAnalyst workflow. RESULTS: There were no significant differences in microbial diversity between control implants and implants with peri-implantitis (Shannon p = 0.82). Overall bacterial community structure assessed through beta diversity analysis was also not significantly different between the two groups (p = 0.18). However, high levels of Gram-negative bacteria were detected in peri-implant pockets compared to the control sulcus. Abundant species in peri-implantitis were Capnocytophaga leadbetteri, Treponema maltophilum, Peptostreptococcus, Neisseria, P. gingivalis, and Porphyromonas endodontali, Lactococcus lactis and Filifactor alocis (p < 0.05). Gram-positive bacteria such as Streptococcus salivaris, Prevotella melaninogenica, L. wadei, and Actinomyces spp. serve were more abundant in peri-implant control sulcus. CONCLUSIONS: Peri-implant sulcus in control implants harbors predominantly Gram-positive bacteria, whereas pockets of implants with peri-implantitis harbor predominantly Gram-negative bacteria.


Assuntos
Implantes Dentários , Microbiota , Peri-Implantite , Humanos , Peri-Implantite/microbiologia , Implantes Dentários/efeitos adversos , RNA Ribossômico 16S/genética , Estudos Transversais , Microbiota/genética
2.
J Prosthodont ; 32(9): 783-792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36691777

RESUMO

PURPOSE: To characterize the microbiome composition within dental implants of peri-implantitis subjects and healthy controls using 16S rRNA gene sequencing. MATERIALS AND METHODS: Twenty-three subjects with healthy (n = 11 implants) and diseased (peri-implantitis, n = 21) implants were included in this controlled clinical cross-sectional study. Samples were obtained from internal surfaces of dental implants using sterile paper points for microbiological analysis. DNA was extracted, and the16S rRNA gene was amplified using universal primers targeting the V3-V4 regions. The resulting 16S polymerize chain reaction amplicons were sequenced on Illumina MiSeq, and the sequences were processed using DADA2 and the Human Oral Microbiome Database (HOMD) as references. Alpha and Beta diversity, as well as core microbiome and differential abundance analyses were then performed using the MicrobiomeAnalyst workflow. RESULTS: A significant increase in microbial diversity was observed in the internal implant surface of healthy implants compared with the internal surfaces of peri-implantitis (Shannon p = 0.02). Bacterial community structure was significantly different among groups (p = 0.012). High levels of Gram-positive bacteria were detected inside implants with peri-implantitis compared to healthy implants, especially Enterococci. CONCLUSIONS: There is a shift in bacterial diversity inside implants with peri-implantitis from the healthy control. The microbial colonization within that space might contribute to the etiology of peri-implant disease.


Assuntos
Implantes Dentários , Microbiota , Peri-Implantite , Humanos , Peri-Implantite/microbiologia , Implantes Dentários/efeitos adversos , RNA Ribossômico 16S/genética , Estudos Transversais , Microbiota/genética
3.
J Prosthodont ; 30(3): 210-234, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016381

RESUMO

PURPOSE: To evaluate and synthesize the existing evidence on the microbiological and human immune response associated with peri-implantitis in comparison to healthy implants. MATERIALS AND METHODS: Three electronic databases (MEDLINE, Embase, and Cochrane Library) were searched in October 2019 to identify clinical studies evaluating the microbiota and the immune response associated with peri-implantitis. Two reviewers independently screened the studies and used the full text to extract the data. A qualitative synthesis was performed on the extracted data and summary tables were prepared. Due to clinical and methodological heterogeneity among included studies, no meta-analysis was performed. RESULTS: Forty studies were included in this review. Of these, 20 studies compared the microbiological profile of peri-implantitis with healthy implants. Nineteen studies focused on the immune response associated with peri-implantitis in comparison to healthy implants. Three studies focus on gene polymorphism associated with peri-implantitis. The most commonly reported bacteria associated with peri-implantitis were obligate anaerobe Gram-negative bacteria (OAGNB), asaccharolytic anaerobic Gram-positive rods (AAGPRs), and other Gram-positive species. In regard to immune response, the most frequently reported pro-inflammatory mediators associated with peri-implantitis were IL-1ß, IL-6, IL-17, TNF-α. Osteolytic mediator, e.g., RANK, RANKL, Wnt5a and proteinase enzymes, MMP-2, MMP-9, and Cathepsin-K were also expressed at higher level in peri-implantitis sites compared to control. CONCLUSIONS: Peri-implantitis is associated with complex and different microbiota than healthy implants including bacteria, archaea, fungi, and virus. This difference in the microbiota could provoke higher inflammatory response and osteolytic activity. All of this could contribute to the physiopathology of peri-implantitis.


Assuntos
Implantes Dentários , Microbiota , Peri-Implantite , Humanos , Imunidade
4.
Sci Rep ; 14(1): 10394, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710815

RESUMO

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Assuntos
Disbiose , Microbiota , Boca , RNA Ribossômico 16S , Tabaco sem Fumaça , Humanos , Tabaco sem Fumaça/efeitos adversos , Masculino , Feminino , Disbiose/microbiologia , Adulto , RNA Ribossômico 16S/genética , Boca/microbiologia , Saliva/microbiologia , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fumantes , Adulto Jovem , Fumar Cigarros/efeitos adversos , Mucosa Bucal/microbiologia
5.
Front Oncol ; 11: 704722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249765

RESUMO

PURPOSE: Define incidence and risk factors of osteonecrosis of the jaw (ONJ) and explore oral microbial signatures and host immune response as reflected by cytokine changes in saliva and serum in multiple myeloma (MM) patients on bisphosphate (BP) therapy. PATIENTS AND METHODS: A single center observational prospective study of MM patients (n = 110) on >2 years of BP, none had ONJ at enrollment. Patients were followed every 3 months for 18 months with clinical/dental examination and serial measurements of inflammatory cytokines, bone turnover markers, and angiogenic growth factors. Oral microbiota was characterized by sequencing of 16S rRNA gene from saliva. RESULTS: Over the study period 14 patients (13%) developed BRONJ, at a median of 5.7 years (95% CI: 1.9-12.0) from MM diagnosis. Chronic periodontal disease was the main clinically observed risk factor. Oral microbial profiling revealed lower bacterial richness/diversity in BRONJ. Streptococcus intermedius, S. mutans, and S. perioris were abundant in controls; S. sonstellatus and S anginosus were prevalent in BRONJ. In the saliva, at baseline patients who developed BRONJ had higher levels of MIP-1ß; TNF-α and IL-6 compared to those without BRONJ, cytokine profile consistent with M-1 macrophage activation. In the serum, patients with BRONJ have significantly lower levels of TGF beta and VEGF over the study period. CONCLUSION: Periodontal disease associated with low microbial diversity and predominance of invasive species with a proinflammatory cytokine profile leading to tissue damage and alteration of immunity seems to be the main culprit in pathogenesis of BRONJ.

6.
Pediatr Infect Dis J ; 37(1): 59-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28746260

RESUMO

BACKGROUND: Although HIV infection is associated with well-known oral pathologies, there remains a dearth of comparative studies aimed at determining the association between HIV infection/exposure and early childhood caries. METHODS: This is a cross-sectional study using a convenience sample of 3 groups of children receiving care at a tertiary care hospital in Nigeria. The groups include HIV infected (HI), HIV exposed but uninfected and HIV-unexposed and -uninfected children 6 through 72 months of age. Medical records were reviewed, and caregivers were interviewed for sociodemographic, maternal and birth factors as well as early feeding and dietary information. Oral examinations were performed by trained dentist examiners. RESULTS: Of 335 children enrolled, 33 (9.9%) presented with caries. In an adjusted analysis, compared with HIV-unexposed and -uninfected children, HI children had significantly greater odds of having caries (odds ratio = 2.58; 95% confidence interval: 1.04-6.40; P = 0.04), but there was no statistically significant difference in HIV exposed but uninfected children (odds ratio = 2.01; 95% confidence interval: 0.56-7.23; P = 0.28). Factors significantly associated with higher caries prevalence include low CD4 counts and percentage, older age, longer duration of breastfeeding and spontaneous membrane rupture during delivery. CONCLUSIONS: Caries was more prevalent in HI children. These findings support the need to target HI children for oral health prevention and treatment services particularly in Nigeria and other developing countries.


Assuntos
Cárie Dentária/complicações , Cárie Dentária/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Infecções por HIV/transmissão , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Masculino , Nigéria/epidemiologia , Gravidez , Complicações Infecciosas na Gravidez , Fatores de Risco
7.
PLoS One ; 10(7): e0131615, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146997

RESUMO

The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections.


Assuntos
Infecções por HIV/microbiologia , Microbiota/fisiologia , Boca/microbiologia , Saliva/microbiologia , Dente/microbiologia , Adolescente , Fármacos Anti-HIV/uso terapêutico , Criança , Pré-Escolar , Estudos Transversais , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Mucosa Bucal/microbiologia , RNA Ribossômico 16S/isolamento & purificação
8.
ISME J ; 4(8): 962-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20336157

RESUMO

The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An 11th pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S ribosomal RNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11,368 high-quality, nonchimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacterial phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences with near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis showed significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Boca/microbiologia , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA