Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nanomedicine ; 13(3): 1089-1094, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27789259

RESUMO

PEGylated nanoparticles have been extensively investigated in different platforms for drug delivery. However, the physiological effects related to platelet activation, and the potential procoagulant activity which could lead to thrombosis and further cardiovascular diseases have not been widely examined. In this work, we studied the effect of differentially charged PEGylated lipid-polymer nanoparticles in the human platelet aggregation and activation by light transmission aggregometry and flow cytometry. PEGylated nanoparticles inhibited the platelet aggregation with a dose dependency (350, 700, and 1400µg/mL) in both ADP- and collagen-induced platelet aggregation, and P-selectin expression. Charged nanoparticles (anionic and cationic) presented higher inhibitions of the platelet aggregation compared to neutral nanoparticles, and particularly the cationic particles generated a slightly higher effect. The obtained results demonstrated the safety of the differentially charged PEGylated lipid-polymer nanoparticles, and their ability to inhibit the aggregation and activation of human platelets stimulated by two classic platelet activators.


Assuntos
Plaquetas/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Lipídeos/farmacologia , Nanopartículas/química , Inibidores da Agregação Plaquetária/farmacologia , Polietilenoglicóis/farmacologia , Plaquetas/citologia , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/química , Humanos , Lipídeos/efeitos adversos , Lipídeos/química , Nanopartículas/efeitos adversos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/química , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/química
2.
Langmuir ; 31(24): 6639-48, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26057588

RESUMO

Patchy polymeric particles have anisotropic surface domains that can be remarkably useful in diverse medical and industrial fields because of their ability to simultaneously present two different surface chemistries on the same construct. In this article, we report the mechanisms involved in the formation of novel lipid-polymeric hollow patchy particles during their synthesis. By cross-sectioning the patchy particles, we found that a phase segregation phenomenon occurs between the core, shell, and patch. Importantly, we found that the shear stress that the polymer blend undergoes during the particle synthesis is the most important parameter for the formation of these patchy particles. In addition, we found that the interplay of solvent-solvent, polymer-solvent, and polymer-polymer-solvent interactions generates particles with different surface morphologies. Understanding the mechanisms involved in the formation of patchy particles allows us to have a better control on their physicochemical properties. Therefore, these fundamental studies are critical to achieve batch control and scalability, which are essential aspects that must be addressed in any type of particle synthesis to be safely used in medicine.


Assuntos
Materiais Biocompatíveis/síntese química , Lipídeos/química , Polímeros/síntese química , Materiais Biocompatíveis/química , Tamanho da Partícula , Polímeros/química , Porosidade , Solventes/química , Propriedades de Superfície
3.
Small ; 9(4): 511-7, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23109494

RESUMO

Spontaneous formation of heterogeneous patches on the surface of lipid-based nanoparticles (NPs) and microparticles (MPs) due to the segregation of two different functional groups. Patch formation is observed when tracing the functional groups with quantum dots, gold nanoparticles, and fluorescent dyes. This discovery could have important implications for the future design of self-assembled NPs and MPs for different biomedical applications.


Assuntos
Lipídeos/química , Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Tamanho da Partícula , Propriedades de Superfície
4.
ACS Nano ; 15(2): 2413-2427, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33464827

RESUMO

One of the primary challenges in breast cancer diagnosis and treatment is intratumor heterogeneity (ITH), i.e., the coexistence of different genetically and epigenetically distinct malignant cells within the same tumor. Thus, the identification of ITH is critical for designing better treatments and hence to increase patient survival rates. Herein, we report a noninvasive hybrid imaging technology that integrates multitargeted and multiplexed patchy polymeric photoacoustic contrast agents (MTMPPPCAs) with single-impulse panoramic photoacoustic computed tomography (SIP-PACT). The target specificity ability of MTMPPPCAs to distinguish estrogen and progesterone receptor-positive breast tumors was demonstrated through both fluorescence and photoacoustic measurements and validated by tissue pathology analysis. This work provides the proof-of-concept of the MTMPPPCAs/SIP-PACT system to identify ITH in nonmetastatic tumors, with both high molecular specificity and real-time detection capability.


Assuntos
Neoplasias da Mama , Técnicas Fotoacústicas , Mama , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Humanos , Polímeros , Tomografia Computadorizada por Raios X
6.
J Nanosci Nanotechnol ; 8(5): 2347-56, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572648

RESUMO

We report the effect of chemical modification of multi-walled carbon nanotubes (MWNTs) on their activation of the human serum complement system, as well as the adsorption of human plasma proteins on MWNTs. Four different types of chemically-modified MWNTs were tested for complement activation via the classical and alternative pathways using haemolytic assays. Human plasma protein binding was also tested using an affinity chromatography technique based on carbon nanotube-Sepharose matrix. Covalent functionalization of MWNTs greatly altered the level of activation of the complement system via the classical pathway. For example, MWNTs functionalised with epsilon-caprolactam or L-alanine showed respectively >90% and >75% reduction in classical pathway activation compared with unmodified MWNTs. These results demonstrate for the first time that these types of chemical modification are able to alter considerably the levels of specific complement proteins bound by pristine MWNTs (used as a control experiment). The reduced levels of complement activation via the classical pathway, that are likely to increase biocompatibility, were directly correlated with the amount of C1q protein bound to chemically modified carbon nanotubes. An inverse correlation was also observed between the amount of complement factor H bound to chemically modified MWNTs and the level of complement consumption via the alternative pathway. Binding of human plasma and serum proteins to pristine and modified MWNTs was highly selective. The chemical modifications studied generally increased nanotube dispersibility in aqueous media, but diminished protein adsorption.


Assuntos
Materiais Biocompatíveis , Nanotubos de Carbono , Proteínas do Sistema Complemento/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia Eletrônica de Transmissão
7.
J Agric Food Chem ; 66(30): 7889-7898, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30039704

RESUMO

The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly(lactic- co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant-nanoherbicide interaction as well as the role of PLGA as a growth potentiator.


Assuntos
Atrazina/química , Portadores de Fármacos/química , Herbicidas/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Portadores de Fármacos/toxicidade , Composição de Medicamentos , Herbicidas/toxicidade , Ácido Láctico/toxicidade , Nanopartículas/toxicidade , Tamanho da Partícula , Ácido Poliglicólico/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento
8.
J Nanosci Nanotechnol ; 3(3): 209-13, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14503402

RESUMO

Carbon nanotubes (CNTs) did not exhibit strong interactions with Biliverdin IX beta reductase enzyme (BVRB) in water. With the use of noncovalent functionalization by the surfactant Triton X-100, the surfaces of the CNTs were changed from hydrophobic to hydrophilic. The hydrophilic surface of the CNT-Triton conjugate interacts with the hydrophilic surface of BVRB, thus creating a water-soluble complex. Results from ultracentrifugation through a sucrose gradient and gel electrophoresis show the presence of the enzyme. Raman spectroscopy confirmed that the enzyme indeed interacts with CNT-Triton conjugates.


Assuntos
Nanotubos de Carbono/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Adsorção , Eletroforese em Gel de Poliacrilamida , Humanos , Técnicas In Vitro , Nanotecnologia/métodos , Octoxinol , Análise Espectral Raman , Tensoativos
9.
Biomaterials ; 30(12): 2231-40, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19167749

RESUMO

Here we report the immunological characterization of lipid-polymer hybrid nanoparticles (NPs) and propose a method to control the levels of complement activation induced by these NPs. This method consists of the highly specific modification of the NP surface with methoxyl, carboxyl, and amine groups. Hybrid NPs with methoxyl surface groups induced the lowest complement activation, whereas the NPs with amine surface groups induced the highest activation. All possible combinations among carboxyl, amine, and methoxyl groups also activated the complement system to a certain extent. All types of NPs activated the complement system primarily via the alternative pathway rather than the lectin pathway. The classical pathway was activated to a very small extent by the NPs with carboxyl and amine surface groups. Human serum and plasma protein binding studies showed that these NPs had different protein binding patterns. Studies of both complement activation and coagulation activation suggested that NPs with methoxyl surface groups might be an ideal candidate for drug delivery applications, since they are not likely to cause any immunological adverse reaction in the human body.


Assuntos
Materiais Biocompatíveis/metabolismo , Lipídeos/química , Lipídeos/imunologia , Nanopartículas/química , Polímeros/química , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Polímeros/farmacologia , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA