Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(7): 2062-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24441164

RESUMO

The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.


Assuntos
Coriolaceae/enzimologia , Coriolaceae/metabolismo , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Proteoma/análise , Madeira/microbiologia , Biotransformação , Cromatografia Líquida , Coriolaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Espectrometria de Massas , Fatores de Tempo
2.
Appl Environ Microbiol ; 80(18): 5828-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015893

RESUMO

We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba × tremula) and syringyl (S)-rich transgenic derivatives. A combination of microarrays and liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Comparisons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 regulated genes, 11 of which were significantly higher (>2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene expression patterns are substantially influenced by lignin composition.


Assuntos
Regulação Fúngica da Expressão Gênica , Phanerochaete/crescimento & desenvolvimento , Phanerochaete/metabolismo , Populus/genética , Madeira/metabolismo , Madeira/microbiologia , Carbono/metabolismo , Cromatografia Líquida , Meios de Cultura/química , Perfilação da Expressão Gênica , Genótipo , Lignina/metabolismo , Análise em Microsséries , Phanerochaete/genética , Espectrometria de Massas em Tandem
3.
Appl Environ Microbiol ; 79(7): 2377-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377930

RESUMO

Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently beginning instead with oxidative attack on wood polymers by Fenton reagent produced when fungal hydroquinones or catechols reduce Fe(3+) in colonized wood. Since there is little evidence that white rot fungi produce these metabolites, one question is the extent to which independent lineages of brown rot fungi may have evolved different Fe(3+) reductants. Recently, the catechol variegatic acid was proposed to drive Fenton chemistry in Serpula lacrymans, a brown rot member of the Boletales (D. C. Eastwood et al., Science 333:762-765, 2011). We found no variegatic acid in wood undergoing decay by S. lacrymans. We found also that variegatic acid failed to reduce in vitro the Fe(3+) oxalate chelates that predominate in brown-rotting wood and that it did not drive Fenton chemistry in vitro under physiological conditions. Instead, the decaying wood contained physiologically significant levels of 2,5-dimethoxyhydroquinone, a reductant with a demonstrated biodegradative role when wood is attacked by certain brown rot fungi in two other divergent lineages, the Gloeophyllales and Polyporales. Our results suggest that the pathway for 2,5-dimethoxyhydroquinone biosynthesis may have been present in ancestral white rot basidiomycetes but do not rule out the possibility that it appeared multiple times via convergent evolution.


Assuntos
Basidiomycota/metabolismo , Hidroquinonas/metabolismo , Lignina/metabolismo , Compostos Férricos/metabolismo , Redes e Vias Metabólicas , Oxirredução , Madeira/metabolismo , Madeira/microbiologia
4.
Appl Environ Microbiol ; 76(11): 3599-610, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20400566

RESUMO

Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.


Assuntos
Coriolaceae/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Phanerochaete/genética , Proteoma , Madeira/microbiologia , Celulose/metabolismo , Cromatografia Líquida , Coriolaceae/química , Proteínas Fúngicas/análise , Glicosiltransferases/metabolismo , Oxirredutases/metabolismo , Phanerochaete/química , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem , Madeira/metabolismo
5.
J Biotechnol ; 142(2): 97-106, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19501263

RESUMO

The presented work reports the isolation and heterologous expression of the p2ox gene encoding the flavoprotein pyranose 2-oxidase (P2Ox) from the basidiomycete Phanerochaete chrysosporium. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in Escherichia coli. We obtained active, fully flavinylated recombinant P2Ox in yields of approximately 270 mg/l medium. The recombinant enzyme was provided with an N-terminal T7-tag and a C-terminal His(6)-tag to facilitate simple one-step purification. We obtained an apparently homogenous enzyme preparation with a specific activity of 16.5 U/mg. Recombinant P2Ox from P. chrysosporium was characterized in some detail with respect to its physical and catalytic properties, both for electron donor (sugar substrates) and - for the first time - alternative electron acceptors (1,4-benzoquinone, substituted quinones, 2,6-dichloroindophenol and ferricenium ion). As judged from the catalytic efficiencies k(cat)/K(m), some of these alternative electron acceptors are better substrates than oxygen, which might have implications for the proposed in vivo function of pyranose 2-oxidase.


Assuntos
Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Phanerochaete/enzimologia , Sequência de Aminoácidos , Benzoquinonas/metabolismo , Desidrogenases de Carboidrato/genética , Cromatografia de Afinidade , Eletroforese , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Lignina/metabolismo , Dados de Sequência Molecular , Phanerochaete/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína
6.
Appl Environ Microbiol ; 72(7): 4871-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16820482

RESUMO

The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences with significant similarity to GLX and designated cro1 through cro6. The predicted mature protein sequences diverge substantially from one another, but the residues coordinating copper and constituting the radical redox site are conserved. Transcript profiles, microscopic examination, and lignin analysis of inoculated thin wood sections are consistent with differential regulation as decay advances. The cro2-encoded protein was detected by liquid chromatography-tandem mass spectrometry in defined medium. The cro2 cDNA was successfully expressed in Aspergillus nidulans under the control of the A. niger glucoamylase promoter and secretion signal. The recombinant CRO2 protein had a substantially different substrate preference than GLX. The role of structurally and functionally diverse cro genes in lignocellulose degradation remains to be established.


Assuntos
Oxirredutases do Álcool , Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , Família Multigênica , Phanerochaete/enzimologia , Transcrição Gênica , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Biodegradação Ambiental , Meios de Cultura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Phanerochaete/genética , Phanerochaete/crescimento & desenvolvimento , Populus/microbiologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA