Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Small ; 17(42): e2103751, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34528759

RESUMO

Dynamic bursting in tumor vasculature has recently sparked interest as a novel particle transportation route for drug delivery. These bursts facilitate the transport of sub-100 nm nanoparticles into tumors, though their contribution on the access of other blood-borne particles remains unknown. To evaluate the versatility of this phenomenon, the in vivo kinetics of a variety of intravenously injected particles and their penetration in tumor xenografts and allografts are compared. Dextran, polymeric micelles, liposomes, and polymeric vesicles with diameters ranging from 32 to 302 nm are found to colocalize in virtually all vascular bursts. By mathematical modeling, the burst vent size is estimated to be 625 nm or larger, indicating the dynamic and stochastic formation of large permeation routes in tumor vasculature. Furthermore, some burst vents are found to be µm-sized, allowing the transport of 1 µm microspheres. Moreover, antibody drugs and platelets are capable of utilizing vascular burst transportation, demonstrating the application of this phenomenon to other types of therapeutics and cellular components. These findings indicate the vast potential of vascular bursts, extending the biological and therapeutic significance of this phenomenon to a wide range of blood-borne particles and cells.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Micelas , Neoplasias/tratamento farmacológico , Tamanho da Partícula
2.
Nat Commun ; 13(1): 7165, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418896

RESUMO

Nano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects. Developing strategies that increase CAF-reprogramming while limiting adverse effects is urgent. Here, taking advantage of the CAF-reprogramming capabilities of tranilast, we developed tranilast-loaded micelles. Strikingly, a 100-fold reduced dose of tranilast-micelles induces superior reprogramming compared to free drug owing to enhanced intratumoral accumulation and cancer-associated fibroblast uptake. Combination of tranilast-micelles and epirubicin-micelles or Doxil with immunotherapy increases T-cell infiltration, resulting in cures and immunological memory in mice bearing immunotherapy-resistant breast cancer. Furthermore, shear wave elastography (SWE) is able to monitor reduced tumor stiffness caused by tranilast-micelles and predict response to nano-immunotherapy. Micellar encapsulation is a promising strategy for TME-reprogramming and SWE is a potential biomarker of response.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Camundongos , Animais , Micelas , Microambiente Tumoral , Imunoterapia , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/uso terapêutico , Fatores Imunológicos , Polímeros
3.
Theranostics ; 10(4): 1910-1922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042344

RESUMO

Tumor normalization strategies aim to improve tumor blood vessel functionality (i.e., perfusion) by reducing the hyper-permeability of tumor vessels or restoring compressed vessels. Despite progress in strategies to normalize the tumor microenvironment (TME), their combinatorial antitumor effects with nanomedicine and immunotherapy remain unexplored. Methods: Here, we re-purposed the TGF-ß inhibitor tranilast, an approved anti-fibrotic and antihistamine drug, and combined it with Doxil nanomedicine to normalize the TME, increase perfusion and oxygenation, and enhance anti-tumor immunity. Specifically, we employed two triple-negative breast cancer (TNBC) mouse models to primarily evaluate the therapeutic and normalization effects of tranilast combined with doxorubicin and Doxil. We demonstrated the optimized normalization effects of tranilast combined with Doxil and extended our analysis to investigate the effect of TME normalization to the efficacy of immune checkpoint inhibitors. Results: Combination of tranilast with Doxil caused a pronounced reduction in extracellular matrix components and an increase in the intratumoral vessel diameter and pericyte coverage, indicators of TME normalization. These modifications resulted in a significant increase in tumor perfusion and oxygenation and enhanced treatment efficacy as indicated by the notable reduction in tumor size. Tranilast further normalized the immune TME by restoring the infiltration of T cells and increasing the fraction of T cells that migrate away from immunosuppressive cancer-associated fibroblasts. Furthermore, we found that combining tranilast with Doxil nanomedicine, significantly improved immunostimulatory M1 macrophage content in the tumorigenic tissue and improved the efficacy of the immune checkpoint blocking antibodies anti-PD-1/anti-CTLA-4. Conclusion: Combinatorial treatment of tranilast with Doxil optimizes TME normalization, improves immunostimulation and enhances the efficacy of immunotherapy.


Assuntos
Imunoterapia/métodos , Fator de Crescimento Transformador beta/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antígeno CTLA-4/efeitos dos fármacos , Quimioterapia do Câncer por Perfusão Regional/métodos , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Combinação de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Feminino , Imunização/métodos , Camundongos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , ortoaminobenzoatos/administração & dosagem , ortoaminobenzoatos/farmacologia
4.
J Control Release ; 261: 105-112, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28662901

RESUMO

Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas Hedgehog/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Paclitaxel Ligado a Albumina/administração & dosagem , Paclitaxel Ligado a Albumina/farmacologia , Anilidas/administração & dosagem , Anilidas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/patologia , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas , Neoplasias Pancreáticas/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA